
Sun et al. Advances in Difference Equations 2014, 2014:77
http://www.advancesindifferenceequations.com/content/2014/1/77

RESEARCH Open Access

Pinning adaptive synchronization of
neutral-type coupled neural networks with
stochastic perturbation
Xiaojie Sun1*, Zuhong Feng2 and Xueliang Liu3

*Correspondence:
sunxiaojie_2009@126.com
1Science and Technology
Information, Shaanxi Railway
Institute, Weinan, 714000, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, by using a pinning adaptive control scheme, we investigate the almost
surely synchronization of neutral-type coupled neural networks with stochastic
perturbation. Based on Lyapunov stability theory, stochastic analysis, and matrix
theory, some sufficient conditions for almost surely synchronization are derived.
Furthermore, a numerical example is exhibited to illustrate the validity of the
theoretical results.
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1 Introduction
In recent years, the neural networks (NNs) have played a significant role in the fields of
science and engineering due to their practical applications including signal and image pro-
cessing, associative memories, combinatorial optimization, automatic control, and so on
(see [–]). Among dynamical behaviors of the neural networks, synchronization is one
of the most important topics that have received considerable research attention [–]. At
the same time, many different kinds of synchronization have been proposed, such as gen-
eralized synchronization [], cluster synchronization [], phase synchronization [], lag
synchronization [], and so on.
Due to the finite speed of transmitting signals between neurons and the transmission

process randomly perturbed by the environmental elements, time delays and stochastic
noises exist in various neural networks, which have become one of the main sources for
causing instability and poor performance of neural networks. So far, most of the existing
results related to the synchronization analysis for neural networks have concerned time
delays and stochastic noises; see [, –, –] and the references therein.
In the case where the network cannot synchronize by itself, many control techniques

have been developed to drive the network to achieve synchronize, such as linear state
feedback control [, ], state observer-based control [], impulsive control [], and
adaptive control []. All of them have the feature that the controller needs to be added
to each node. But in practice, it is too difficult to add controllers to all nodes in a large-
scale network. To reduce the number of controlled nodes, pinning control is introduced,
in which controllers are only applied to partial nodes. In [], it has been shown that a sin-
gle controller can ensure that the whole network synchronizes asymptotically with large
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enough coupling strength andwithout any prior knowledge of the structure of the network
topology. In [], the cluster synchronization issue is considered for a class of delayed cou-
pled complex dynamical networks by using the pinning control strategy. In addition, the
pinning adaptive control method has received considerable research attention, which is
utilized to get the appropriate control gains effectively. By using the adaptive pinning ap-
proach, the robust synchronization of a class of nonlinearly coupled complex networks is
investigated in []. An adaptive pinning control method is proposed in [] to synchro-
nize a delayed complex dynamical network with free couplingmatrix. In [], the adaptive
pinning synchronization is investigated for complex networks with non-delayed and de-
layed couplings and vector-form stochastic perturbations.
Recently, the stability and synchronization of neutral-type systems have been studied

widely [–], in which the time delays occur not only in the system states but also in
the derivatives of the system states. In [], the problem of stochastic stability of neutral-
type neural networks with Markovian jumping parameters is considered. By using the
adaptive control approach, the exponential synchronization in the pthmoment of neutral-
type delayed neural networks is investigated in []. In [], an adaptive control method is
proposed to synchronize for a class of coupled neutral-type complex dynamical networks
by adding adaptive controller to all nodes. To the best of our knowledge, the problem of
adaptive pinning synchronization for neutral-type neural networks with stochastic per-
turbation has received very little research attention.
In this paper, we are concernedwith the analysis issue for adaptive pinning synchroniza-

tion of neutral-type neural networks with stochastic perturbation. By using Lyapunov sta-
bility theory and adaptive pinning control approach, several criteria are given to guarantee
the almost surely synchronization of neutral-type coupled neural networks with stochas-
tic perturbation. A numerical example is also presented to show the effectiveness of the
proposed method. The main contributions of this paper are as follows:
() A new class of neutral-type neural networks with pinning adaptive controller is

considered.
() A new pinning adaptive law is designed.
Thenotations are quite standard. Throughout this paper,R+,Rn, andRn×m denote the set

of non-negative real numbers, n dimensional Euclidean space and the set of all n×m real
matrices, respectively. The superscript T denotes matrix transposition, trace(·) denotes
the trace of the corresponding matrix and I denotes the identity matrix. ‖ · ‖ stands for
the Euclidean norm in Rn. diag{· · · } stands for the block diagonal matrix. Let (�,F ,P)
be a complete probability space with a filtration {Ft}t≥ satisfying the usual conditions
(i.e. the filtration contains all P-null sets and is increasing and right continuous). Denote
by Cb

F
([–τ , ];Rn) the family of all F-measurable, bounded, and Cb([–τ , ];Rn)-value

random variables.

2 Model and preliminaries
Consider a complex system consisting of N linearly coupled identical neutral-type neural
networks. The ith neutral-type neural network [] can be described by the following
differential equation:

ẋi(t) –Dẋi
(
t – τ (t)

)
= –Cxi(t) +Af

(
xi(t)

)
+ Bg

(
xi

(
t – τ (t)

))
+ J(t), ()
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where xi(t) = [xi(t),xi(t), . . . ,xin(t)]T ∈ Rn is the state vector associated with n neurons,
f (·) and g(·) denotes the neuron activation functions, τ (t) represents the time-varying de-
lay with  < τ (t) < τ , τ̇ (t) ≤ τ̄ < , A = (aij)n×n and B = (bij)n×n are the connection weight
and the delay connection weight matrices, respectively, C = diag{c, c, . . . , cn} is a positive
diagonal matrix, D = (dij)n×n is called the neutral-type parameter matrix, and J(t) ∈ Rn is
the constant external input vector.
The dynamical behavior of linearly coupled neutral-type neural networks with stochas-

tic perturbation can be described by the following stochastic delayed differential equa-
tions:

d
[
xi(t) –Dxi

(
t – τ (t)

)]

=

{
–Cxi(t) +Af

(
xi(t)

)
+ Bg

(
xi

(
t – τ (t)

))
+ J(t) + c

N∑
j=

gij�xj(t) + ui(t)

}
dt

+ σ
(
t, ei(t), ei

(
t – τ (t)

))
dB(t), i = , , . . . ,N , ()

where � = diag{γ,γ, . . . ,γn} is a diagonal matrix describing the inner coupling between
two connected nodes i and j (i �= j) at time t; c is the coupling strength; G = (gij)N×N is
the out coupling configuration matrix which represents the topological structure of the
whole network, where the entries gij are defined as follows: if there is a link from node i
to node j, then gij = gji >  (j �= i); Otherwise, gij = gji = . It assumes that

∑N
j= gij = ; ui(t)

is a control input vector, B(t) ∈ Rm is an m-dimensional Brownian motion defined on a
complete probability space (�,F ,P), σ (· , · , ·) : R+×Rn×Rn → Rn×m is a Borelmeasurable
matrix function, ei(t) = xi(t) – s(t) denotes the error between the state of node i and the
desired state vector s(t). The dynamical equations of s(t) and ei(t) satisfy

ṡ(t) –Dṡ
(
t – τ (t)

)
= –Cs(t) +Af

(
s(t)

)
+ Bg

(
s
(
t – τ (t)

))
+ J(t), ()

d
[
ei(t) –Dei

(
t – τ (t)

)]

=

{
–Cei(t) +Af

(
ei(t)

)
+ Bg

(
ei

(
t – τ (t)

))
+ c

N∑
j=

gij�ej(t) + ui(t)

}
dt

+ σ
(
t, ei(t), ei

(
t – τ (t)

))
dB(t), i = , , . . . ,N , ()

where f (ei(t)) = f (xi(t)) – f (s(t)) and g(ei(t – τ (t))) = g(xi(t – τ (t))) – g(s(t – τ (t))).
To prove our main results, the following assumptions are necessary.

Assumption  The functions f (·) and g(·) satisfy the Lipschitz condition. That is, there
exist two positive constants l and l, such that

∥∥f (x) – f (y)
∥∥ ≤ l‖x – y‖,∥∥g(x) – g(y)
∥∥ ≤ l‖x – y‖

hold, for any x, y ∈ Rn.
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Assumption  The noise intensity matrix σ (· , · , ·) satisfies the bound condition. That is,
there exist two positive constant h and h, such that

trace
[
σT (t,x, y)σ (t,x, y)

] ≤ h‖x‖ + h‖y‖

hold, for any x, y ∈ Rn.

Assumption  There is a constant κ ∈ (, ) such that

‖Dx –Dx̄‖ ≤ κ‖x – x̄‖ ∀x, x̄ ∈ Rn.

In order to derive the main results, the following definitions and lemmas are necessary
in this paper.
Consider a stochastic differential delays equation with the form

dx(t) = f
(
t,x(t),x(t – τ )

)
dt + g

(
t,x(t),x(t – τ )

)
dω(t) ()

on t ∈ [, +∞) with the initial data given by ξ ∈ Cb
F

([–τ , ];Rn).

Definition  [] The trivial solution x(t, ξ ) of the system () is said to be almost surely
asymptotically stable if

P
(
lim
t→∞x(t, ξ ) = 

)
= ,

for all initial conditions ξ ∈ Cb
F

([–τ , ];Rn).

Definition  The network () is said to have almost surely asymptotical synchronization
if network () is almost surely asymptotically stable.

Lemma  [] Assume that system () exists a unique solution x(t, ξ ) on t >  for any given
initial data {x(θ ) : –τ ≤ θ ≤ } = ξ ∈ Cb

F
([–τ , ];Rn),moreover, both f (x, y, t) and σ (x, y, t)

are locally bounded in (x, y) anduniformly bounded in t. If there are functions V ∈ C,(Rn×
R+;R+), β ∈ L(R+;R+) and ω,ω ∈ C(Rn;R+) such that

(i) LV (x, y, t) ≤ β(t) –ω(x) +ω(y), (x, y, t) ∈ Rn × Rn × R+,

(ii) ω(x) > ω(x), ∀x �= ,

(iii) lim‖x‖→∞ inf
≤t≤∞V (x, t) = ∞,

then

lim
x→∞x(t; ξ ) =  a.s.

for every ξ ∈ Cb
F

([–τ , ];Rn).

This lemma is called the LaShall-type invariance principle.
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Lemma  [] Let x, y ∈ Rn. Then

xTy≤ εxTx + ε–yTy,

for any ε > .

3 Main result
In order to realize synchronization of the neutral-type coupled neural networks by adap-
tive pinning control, some controllers are added to some of the nodes. Without loss of
generality, let the first l nodes be controlled, and the controllers are chosen as follows:

ui(t) =

⎧⎨
⎩–ki(t)(ei(t) –Dei(t – τ (t))), i = , , . . . , l,

, i = l + , l + , . . . ,N .

Then the error system () can be described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[ei(t) –Dei(t – τ (t))] = {–Cei(t) +Af (ei(t)) + Bg(ei(t – τ (t))) +
∑N

j= gij�ej(t)

– ki(t)(ei(t) –Dei(t – τ (t)))}dt + σ (t, ei(t), ei(t – τ (t)))dB(t),

i = , , . . . , l,

d[ei(t) –Dei(t – τ (t))] = {–Cei(t) +Af (ei(t)) + Bg(ei(t – τ (t)))

+
∑N

j= gij�ej(t)}dt + σ (t, ei(t), ei(t – τ (t)))dB(t),

i = l + , l + , . . . ,N .

()

Our object is to design an adaptive controller such that the neutral-type coupled neural
network () can realize synchronization. The main results are stated as follows.

Theorem Suppose thatAssumptions - hold.The controlled network () can be synchro-
nized with the trajectory of s(t) for almost every initial data, if there exist positive constants
εi (i = , , , ), ρ , ξ, ξ, and positive definite matrices P, Q, such that

(i) P ≤ ρIn,

(ii) � =

[
� �

�T
 �

]
≤ ,

(iii) ξ > ξ,

where

� = IN ⊗
(
Q +



[
–PC –CTP + εPATAP + εPBBTP

+
(
ε– l + εl + ρh + ξ

)
In

])
+ cG⊗ P� –K∗ ⊗ P,

� =


IN ⊗DTPC +K∗ ⊗DTP –

c

G⊗DTP�,

� = IN ⊗
(
–( – τ̄ )Q +



[
ε– DTPAATPD + ε– DTPBBTPD

http://www.advancesindifferenceequations.com/content/2014/1/77
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+
(
ε– l + ε– l + ρh – ξ

)
In

])
–K∗ ⊗DTPD,

K∗ = diag
{
k∗
 ,k

∗
 , . . . ,k

∗
l , , . . . , 

}
,

and we choose the adaptive law as

k̇i(t) = αi
(
ei(t) –Dei

(
t – τ (t)

)T)
P
(
ei(t) –Dei

(
t – τ (t)

))
, αi > , i = , , . . . , l. ()

Proof Construct the following Lyapunov function:

V (t,X) =



N∑
i=

XT
i PXi +

N∑
i=

∫ t

t–τ (t)
eTi (s)Qei(s)ds +

l∑
i=


αi

(
ki(t) – k∗

i
),

where Xi = ei(t) –Dei(t – τ (t)).
Computing LV (t,X) along the trajectory of error system (), one obtains

LV (t,X) =
N∑
i=

[
eTi (t)Qei(t) –

(
 – τ̇ (t)

)
eTi

(
t – τ (t)

)
Qei

(
t – τ (t)

)]

+
l∑

i=


αi

(
ki(t) – k∗

i
)
k̇i(t)

+
N∑
i=

XT
i P

[
–Cei(t) +Af

(
ei(t)

)
+ Bg

(
ei

(
t – τ (t)

))
+

N∑
j=

gij�ej(t)

]

–
l∑

i=

ki(t)XT
i P

(
ei(t) –Dei

(
t – τ (t)

))

+
N∑
i=



trace

(
σT(

t, ei(t), ei
(
t – τ (t)

))
Pσ

(
t, ei(t), ei

(
t – τ (t)

)))
. ()

Based on Lemma  and Assumption , we have

eTi (t)PAf
(
ei(t)

) ≤ 

εeTi (t)PAA

TPei(t) +


ε– f T

(
ei(t)

)
f
(
ei(t)

)
≤ 


eTi (t)

(
εPAATP + ε– l In

)
ei(t). ()

By following similar steps to those denoted in (), we get

eTi (t)PBg
(
ei

(
t – τ (t)

)) ≤ 

εeTi (t)PBB

TPei(t) +


ε– le

T
i
(
t – τ (t)

)
ei

(
t – τ (t)

)
, ()

–eTi
(
t – τ (t)

)
DTPAf

(
ei(t)

)
≤ 


εl e

T
i (t)ei(t) +



ε– eTi

(
t – τ (t)

)
DTPAATPDei

(
t – τ (t)

)
, ()

–eTi
(
t – τ (t)

)
DTPBg

(
ei

(
t – τ (t)

))
≤ 


eTi

(
t – τ (t)

)(
εDTPBBTPD + ε– lIn

)
ei

(
t – τ (t)

)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/77
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According to Assumption  and P < ρIn, we obtain

N∑
i=



trace

(
σT(

t, ei(t), e
(
t – τ (t)

))
Pσ

(
t, ei(t), e

(
t – τ (t)

)))

≤
N∑
i=



ρ
[
heTi (t)ei(t) + heTi

(
t – τ (t)

)
ei

(
t – τ (t)

)]
. ()

Substituting () one has the following expression:

l∑
i=


αi

(
ki(t) – k∗

i
)
k̇i(t) –

l∑
i=

ki(t)XT
i P

(
ei(t) –Dei

(
t – τ (t)

))

= –
l∑

i=

k∗
i
(
ei(t) –Dei

(
t – τ (t)

))TP(
ei(t) –Dei

(
t – τ (t)

))

= –
l∑

i=

k∗
i
[
eTi (t)Pei(t) – eTi

(
t – τ (t)

)
DTPei(t)

+ eTi
(
t – τ (t)

)
DTPDei

(
t – τ (t)

)]
. ()

Substituting ()-() into (), one can verify easily that

LV (t,X)

≤
N∑
i=

eTi (t)

{(
Q +



[
–PC –CTP + εPATAP + εPBBTP

+
(
ε– l + εl + ρh

)
In

])
ei(t) + c

N∑
j=

gijP�ej(t)

}
–

l∑
i=

k∗
i e

T
i (t)Pei(t)

+
N∑
i=

eTi
(
t – τ (t)

){(
DTPC + k∗

i D
TP

)
ei(t) – c

N∑
j=

gijDTP�ej(t)

}

+
N∑
j=

eTi
(
t – τ (t)

){
–( – τ̄ )Q +



[
ε– DTPAATPD + ε– DTPBBTPD

+
(
ε– l + ε– l + ρh

)
In

]}
ei

(
t – τ (t)

)
–

l∑
i=

k∗
i e

T
i
(
t – τ (t)

)
DTPDei

(
t – τ (t)

)

= eT (t)
{
IN ⊗

(
Q +



[
–PC –CTP + εPATAP + εPBBTP

+
(
ε– l + εl + ρh + ξ

)
In

])
+ cG⊗ P� –K∗ ⊗ P

}
e(t)

+ eT
(
t – τ (t)

)(
IN ⊗DTPC + K∗ ⊗DTP – cG⊗DTP�

)
e(t)

+ eT
(
t – τ (t)

)(
IN ⊗

(
–( – τ̄ )Q +



[
ε– DTPAATPD + ε– DTPBBTPD

+
(
ε– l + ε– l + ρh – ξ

)
In

])
–K∗ ⊗DTPD

)
e
(
t – τ (t)

)

http://www.advancesindifferenceequations.com/content/2014/1/77
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– ξeT (t)e(t) + ξeT
(
t – τ (t)

)
e
(
t – τ (t)

)
= ζT (t)�ζ (t) – ξeT (t)e(t) + ξeT

(
t – τ (t)

)
e
(
t – τ (t)

)
, ()

where ζ (t) = [eT (t), eT (t – τ (t))]T , e(t) = [eT (t), eT (t), . . . , eTN (t)]T , and K∗ = diag{k∗
 , . . . ,k∗

l ,
, . . . , }.
Considering � < , we have

LV (t,X) ≤ –ξeT (t)e(t) + ξeT
(
t – τ (t)

)
e
(
t – τ (t)

)
= –ω

(
e(t)

)
+ω

(
e
(
t – τ (t)

))
,

where ω(e(t)) = ξeT (t)e(t) and ω(e(t – τ (t))) = ξeT (t – τ (t))e(t – τ (t)).
It can be seen that ω(e(t)) > ω(e(t)) for any e(t) �= . Therefore, applying a LaSalle-type

invariance principle for the stochastic differential delay equation, we can conclude that
the controlled network () can be synchronized with the trajectory s(t) for almost every
initial data. The proof is completed. �

Remark  In this paper, we investigate the almost surely synchronization for neutral-type
coupled neural networks by adding adaptive controllers to the partial nodes. It is different
from that in [], where the authors consider the exponential synchronization in mean
square of the coupled complex dynamical networks by adding adaptive controllers to all
nodes.

When D = , from Theorem  we obtain the following corollary.

Corollary  Suppose that Assumptions - hold. The controlled network () with D = 
can be synchronized with the trajectory of s(t) for almost every initial data, if there exist
positive constants εi (i = , ), ρ , ξ, ξ, and positive definite matrices P, Q, such that

(i) P ≤ ρIn,

(ii) IN ⊗
(


[
–PC –CTP + εPATAP + εPBBTP +

(
ε– l + ρh + ξ

)
In

])

+ cG⊗ P� –K∗ ⊗ P ≤ ,

(iii) ξ > ξ,

where ξ = 
 (ε

–
 l +ρh) and K∗ = diag{k∗

 ,k∗
 , . . . ,k∗

l , , . . . , }.We choose the adaptive law
as

k̇i(t) = αieTi (t)Pei(t), αi > , i = , , . . . , l. ()

When the time-varying delay is constant (i.e. τ (t) = τ ), from Theorem  we have the
following corollary.

Corollary  Suppose that Assumptions - hold. The controlled network () can be syn-
chronized with the trajectory of s(t) for almost every initial data, if there exist positive con-

http://www.advancesindifferenceequations.com/content/2014/1/77


Sun et al. Advances in Difference Equations 2014, 2014:77 Page 9 of 13
http://www.advancesindifferenceequations.com/content/2014/1/77

Figure 1 Dynamical behavior of the neutral-type system (3).

stants εi (i = , , , ), ρ , ξ, ξ, and positive definite matrices P, Q, such that

(i) P ≤ ρIn,

(ii) � =

[
� �

�T
 �

]
≤ ,

(iii) ξ > ξ,

where

� = IN ⊗
(
Q +



[
–PC –CTP + εPATAP + εPBBTP

+
(
ε– l + εl + ρh + ξ

)
In

])
+ cG⊗ P� –K∗ ⊗ P,

� =


IN ⊗DTPC +K∗ ⊗DTP –

c

G⊗DTP�,

� = IN ⊗
(
–Q +



[
ε– DTPAATPD + ε– DTPBBTPD

+
(
ε– l + ε– l + ρh – ξ

)
In

])
–K∗ ⊗DTPD,

K∗ = diag
{
k∗
 ,k

∗
 , . . . ,k

∗
l , , . . . , 

}
,

and we choose the adaptive law as

k̇i(t) = αi
(
ei(t) –Dei(t – τ )T

)
P
(
ei(t) –Dei(t – τ )

)
, αi > , i = , , . . . , l. ()

4 Numerical simulation
In this section, we present a numerical simulation to illustrate the feasibility and effective-
ness of our results.

http://www.advancesindifferenceequations.com/content/2014/1/77
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Figure 2 The trajectories of the state variables of xi(t) (i = 1, . . . , 6) in the uncontrolled network (2).

Figure 3 The trajectories of the state variables of xi1(t) (i = 1,2, . . . , 6) in the controlled network (2).

Consider the neutral-type coupled neural network () consisting of six nodes and the
parameters given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) = g(x) = tanh(x), c = , � = I, τ (t) = et
+et < , τ̄ ≤ 

 ,

A =
[ . –.
–. 

]
, B =

[ –. –.
–. –.

]
, C =

[ –. 
 –.

]
,

D =
[ . 

. .

]
, G = (gij)× =

⎡
⎢⎢⎣

–     
 –    
  –   
   –  
    – 
     –

⎤
⎥⎥⎦ ,

σ (t, ei(t), ei(t – τ (t))) = .(ei(t)ei(t – τ (t)), ei(t)ei(t – τ (t)))T .

The nonlinear functions f (·) and g(·) satisfy the Lipschitz condition with l = l = . The
noise intensity matrix σ (· , · , ·) satisfies the bound condition with h = h = .. In the
simulation, we add the adaptive feedback controllers to the first, second, and fifth nodes.
Let P = I, ε = ., ε = ., ε = ., ε = ., K∗ = diag(, , , , , ), Q =

[ . .
. .

]
,

http://www.advancesindifferenceequations.com/content/2014/1/77
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Figure 4 The trajectories of the state variables of xi2(t) (i = 1,2, . . . , 6) in the controlled network (2).

Figure 5 Time evolution of the adaptive strengths k1, k2, k3.

thus

� < , ξ = ., ξ = ..

Hence, the condition in Theorem  is satisfied. According to Theorem , the neutral-type
coupled neural network () achieves pinning adaptive synchronization. The initial condi-
tions of the numerical simulation are as follows:

X() =
[
x(),x(), . . . ,x()

]
=

[
–. . . –. . –.
 –   –. –

]
,

s() =

[
–


]
, ki() = , i = , , .

The simulation results are given in Figures -. The dynamical behavior of the neutral-
type neural network s(t) is shown in Figure ; the trajectories of the uncontrolled and
controlled neutral-type coupled neural network () are shown in Figure  and Figures -,

http://www.advancesindifferenceequations.com/content/2014/1/77
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respectively. It is clear that all nodes xi(t) tend to synchronization state s(t) in Figures 
and . The evolution of the adaptive strengths is given as Figure .

5 Conclusion
In this paper, we have investigated the almost surely synchronization problem for an array
of linearly coupled neutral-type neural networks by using adaptive pinning control. By
utilizing Lyapunov stability theory and the adaptive pinning control method, some novel
conditions for synchronization are derived. Furthermore, a numerical example has verified
the effectiveness of the presented method.
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