120 research outputs found

    Utility of Real Time three dimensional echocardiography in Balloon Mitral Valvuloplasty.

    Get PDF
    Mitral valve is much more complex than the semilunar valve. The mitral valve consists of six major anatomic components: The posterior left atrial wall, annulus, leaflet, chordae tendinae, papillary muscles and left ventricular free wall. The circumference of the normal mitral valve ranges from 8 to 10.5 cm (Mean 9.4). Mitral valve consists of two leaflets. The anterior leaflet has a much longer base to margin of closure width (2.3cm) than posterior leaflet (1.2cm), but the circumference (6cm) of the posterior leaflet (annular attachment) is about twice that of the anterior leaflet (3cm). The anterior leaflet is large and semicircular, and it partially separates the ventricular inflow and outflow tracts. However, unlike its right-sided counterpart, it also forms part of the outflow tract. The posterior mitral leaflet is rectangular and is usually divided into three scallops. The middle scallop is the largest of the three in more than 90 percent of normal hearts. Occasionally, however, either the anterolateral or the posteromedial scallop is larger, and rarely there are accessory scallops. Posterior mitral leaflet prolapse usually involves the middle scallop and may be associated with chordal rupture. Both mitral leaflets are normally similar in area. The anterior leaflet is twice the height of the posterior leaflet but has half its annular length. With advanced age, the mitral leaflets thicken somewhat, particularly along their closing edges. AIM OF THE STUDY: Three-dimensional echocardiography is a recently developed, evolving imaging technique that allows visualization of intra cardiac structures from any perspective. This study aims at utilizing real time three-dimensional transthoracic echocardiography (RT3DE) technique for comprehensive assessment of - cardiac anatomy, - cardiac pathophysiology, - pathomorphology, in patients with rheumatic mitral stenosis who underwent Balloon mitral valvotomy (BMV). CONCLUSIONS: 1. Three-dimensional echocardiographic reconstruction of the mitral valve obtained by transthoracic echocardiography during BMV is a new, noninvasive imaging technique that can more accurately visualize the mechanisms of successful BMV, as well as some of its complications. 2. This can potentially be used to further guide and optimize the results of BMV by visualizing the extent of commissural splitting so that a maximal mitral valve area can be obtained safely. It may also help to prevent the development of significant mitral regurgitation during the procedure. Visualizing a small tear of the mitral valve leaflet associated with only minimal valvular regurgitation may prevent another balloon inflation that may worsen the tear and create more significant mitral regurgitation. 3. Further improvements in the hardware and software of this echocardiographic system are needed to test this hypothesis so that larger studies transthoracic RT3DE is a feasible and accurate technique for measuring MVA in patients with Rheumatic mitral valve stenosis compared to the PHT method and 2D echo planimetry, RT3DE results have the best agreement with the invasively determined MVA, particularly in the immediate post-BMV period, where PHT is inaccurate

    Alteration of renal respiratory Complex-III during experimental type-1 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes has become the single most common cause for end-stage renal disease in the United States. It has been established that mitochondrial damage occurs during diabetes; however, little is known about what initiates mitochondrial injury and oxidant production during the early stages of diabetes. Inactivation of mitochondrial respiratory complexes or alteration of their critical subunits can lead to generation of mitochondrial oxidants, mitochondrial damage, and organ injury. Thus, one goal of this study was to determine the status of mitochondrial respiratory complexes in the rat kidney during the early stages of diabetes (5-weeks post streptozotocin injection).</p> <p>Methods</p> <p>Mitochondrial complex activity assays, blue native gel electrophoresis (BN-PAGE), Complex III immunoprecipitation, and an ATP assay were performed to examine the effects of diabetes on the status of respiratory complexes and energy levels in renal mitochondria. Creatinine clearance and urine albumin excretion were measured to assess the status of renal function in our model.</p> <p>Results</p> <p>Interestingly, of all four respiratory complexes only cytochrome c reductase (Complex-III) activity was significantly decreased, whereas two Complex III subunits, Core 2 protein and Rieske protein, were up regulated in the diabetic renal mitochondria. The BN-PAGE data suggested that Complex III failed to assemble correctly, which could also explain the compensatory upregulation of specific Complex III subunits. In addition, the renal F<sub>0</sub>F<sub>1</sub>-ATPase activity and ATP levels were increased during diabetes.</p> <p>Conclusion</p> <p>In summary, these findings show for the first time that early (and selective) inactivation of Complex-III may contribute to the mitochondrial oxidant production which occurs in the early stages of diabetes.</p

    Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions

    Get PDF
    Although group (IV-VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom&apos;s electron withdrawing effect, which creates s/p-holes at the bond-ends. However, a completely opposite behavior is exhibited by N-2 and O-2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV-VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions.open

    Geldanamycin Derivative Ameliorates High Fat Diet-Induced Renal Failure in Diabetes

    Get PDF
    Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90β1 (hsp90β1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca2+ efflux in HFD-fed db/db mice. These results suggest that hsp90β1 is a potential target for the treatment of nephropathy and renal failure in diabetes

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    <span style="font-size:12.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-ansi-language: EN-GB;mso-fareast-language:EN-US;mso-bidi-language:AR-SA" lang="EN-GB">Diethylaminosulfurtrifluoride-catalyzed efficient one-pot three-component aza-Diels-Alder reactions: A facile synthesis of substituted hexahydrofurano[3,2-<i style="mso-bidi-font-style:normal">c</i>]quinolines</span>

    No full text
    553-559The aza-Diels-Alder reactions of anilines in combination with substituted benzaldehydes and electron-rich cyclic alkenes have been investigated. The reactions have been carried out in the presence of catalytic amount of diethylaminosulfurtrifluoride in acetonitrile at room temperature, affording substituted furanoquinolines in 80-95% isolated yields

    Predictive factors of mortality for primary pontine haemorrhage in an Asian population

    No full text
    corecore