3,464 research outputs found

    VLBI imaging of the gravitational lens MGJ0414+0534

    Get PDF
    We observed the quadruple gravitationally lensed image of MGJ0414+0534 on 23 November 1997 with a global VLBI array at 8.4 GHz. We report wide-field imaging results of its four components at submilliarcsecond resolution, displaying complex core-like and jet-like extended structures. A simple model combining a singular isothermal ellipsoid to represent the main lens galaxy, external shear, and a singular isothermal sphere to represent an additional, nearby object accounts well for the core positions and flux densities of the VLBI images. This model predicts delays between the different lensed images of several weeks.Comment: 6 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    The 2005 outburst of the halo black hole X-ray transient XTE J1118+480

    Get PDF
    We present optical and infrared monitoring of the 2005 outburst of the halo black hole X-ray transient XTE J1118+480. We measured a total outburst amplitude of ~5.7 ± 0.1 mag in the R band and ~5 mag in the infrared J, H, and Ks bands. The hardness ratio HR2 (5-12 keV : 3-5 keV) from the RXTE ASM data is 1.53 ± 0.02 at the peak of the outburst, indicating a hard spectrum. Both the shape of the light curve and the ratio LX(1-10 keV)/Lopt resemble the minioutbursts observed in GRO J0422+32 and XTE J1859+226. During early decline, we find a 0.02 mag amplitude variation consistent with a superhump modulation, like the one observed during the 2000 outburst. Similarly, XTE J1118+480 displayed a double-humped ellipsoidal modulation distorted by a superhump wave when settled into a near-quiescence level, suggesting that the disk expanded to the 3 : 1 resonance radius after outburst, where it remained until early quiescence. The system reached quiescence at R = 19.02 ± 0.03, about 3 months after the onset of the outburst. The optical rise preceded the X-ray rise by at most 4 days. The spectral energy distributions (SEDs) at the different epochs during outburst are all quasi-power laws with Fν να increasing toward the blue. At the peak of the outburst, we derived α = 0.49 ± 0.04 for the optical data alone and α = 0.1 ± 0.1 when fitting solely the infrared. This difference between the optical and the infrared SEDs suggests that the infrared is dominated by a different component (a jet?), whereas the optical is presumably showing the disk evolution

    Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

    Full text link
    The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's sensitivity improves with the gamma-ray energy. Above \sim1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form ϕ(E)=ϕ0(E/E0)αβln(E/E0)\phi(E) = \phi_0 (E/E_{0})^{-\alpha -\beta\cdot{\rm{ln}}(E/E_{0})}. The data is well-fit with values of α=2.63±0.03\alpha=2.63\pm0.03, β=0.15±0.03\beta=0.15\pm0.03, and log10(ϕ0 cm2 s TeV)=12.60±0.02_{10}(\phi_0~{\rm{cm}^2}~{\rm{s}}~{\rm{TeV}})=-12.60\pm0.02 when E0E_{0} is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±\pm50\% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
    corecore