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ABSTRACT

We present optical and infrared monitoring of the 2005 outburst of the halo

black hole X-ray transient XTE J1118+480. We measured a total outburst am-

plitude of ∼ 5.7±0.1 mag in the R band and ∼ 5 mag in the infrared J , H and Ks

bands. The hardness ratio HR2 (5-12 keV/3-5 keV) from the RXTE/ASM data is

1.53±0.02 at the peak of the outburst indicating a hard spectrum. Both the shape

of the light curve and the ratio LX(1-10 keV)/Lopt resemble the mini-outbursts

observed in GRO J0422+32 and XTE J1859+226. During early decline, we find
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a 0.02-mag amplitude variation consistent with a superhump modulation, like

the one observed during the 2000 outburst. Similarly, XTE J1118+480 displayed

a double-humped ellipsoidal modulation distorted by a superhump wave when

settled into a near-quiescence level, suggesting that the disk expanded to the 3:1

resonance radius after outburst where it remained until early quiescence. The

system reached quiescence at R = 19.02±0.03 about three months after the onset

of the outburst. The optical rise preceded the X-ray rise by at most 4 days. The

spectral energy distributions (SEDs) at the different epochs during outburst are

all quasi-power laws with Fν ∝ να increasing toward the blue. At the peak of the

outburst we derived α = 0.49± 0.04 for the optical data alone and α = 0.1± 0.1

when fitting solely the infrared. This difference between the optical and the in-

frared SEDs suggests that the infrared is dominated by a different component (a

jet?) whereas the optical is presumably showing the disk evolution.

Subject headings: accretion, accretion disks — binaries: close — stars:individual

(XTE J1118+480, KV UMa)— X-rays: stars

1. Introduction

X-ray transients (XRTs) are a class of low-mass X-ray binaries in which long periods of

quiescence (typically decades) are interrupted by dramatic outbursts, when the X-ray lumi-

nosity suddenly increases by up to a factor of 106 (e.g., Charles & Coe 2004). During the

outburst, XRTs usually reach a state in which the X-ray emission is dominated by thermal

emission from the hot inner accretion disk (i.e. the high/soft – HS – or thermal dominated

state). There are, however, a few of these systems (see e.g., Brocksopp, Bandyopadhyay &

Fender 2004) that are instead dominated by a hard non-thermal power-law component likely

produced by thermal Comptonization of seed photons in the vicinity of the accreting black

hole (i.e. the low/hard – LH – state). At even lower accretion rates, XRTs reach quiescence

which may be just an extreme example of the LH state. To explain the LH (and quies-

cent) state a standard disk truncated at some large inner radius is assumed. The interior

volume is filled with a hot, optically thin, quasi-spherical accretion flow where most of the

energy released via viscous dissipation remains in this flow rather than being radiated away

(as in a disk) to be finally advected by the compact object (e.g., Narayan, McClintock & Yi

1996). This model, called Advection Dominated Accretion Flow (ADAF), is the most widely

discussed picture although other alternatives have also been invoked. For instance, the Ac-

cretion Disk Corona model assumes a cool thin disk embedded in a hot corona powered by

magnetic flares (e.g., Merloni & Fabian 2001). Also, it has been proposed that emission from
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jets (which are believed to be associated with the LH state) can account for the observed

spectra in XRTs (e.g., Merloni & Fabian 2002).

The XRT XTE J1118+480 was discovered by the All Sky Monitor (asm) on board of

the Rossi X-ray Timing Explorer (rxte) on 2000 March 29 (Remillard et al. 2000) as a

weak, slowly rising X-ray source. Retrospective analysis of the asm database revealed a pre-

vious outburst episode in January 2000. The precursor was shorter than the main outburst

although both reached similar brightness (e.g. Uemura et al. 2000). XTE J1118+480 is one

of the few XRTs that remained in a LH state throughout the outburst and failed to reach

the HS state. This object is also important for several reasons: it is a secure case of black

hole (f(M) = 6.1± 0.3M⊙; McClintock et al. 2001a; Wagner et al. 2001; Torres et al. 2004),

the black hole transient with the shortest orbital period (Porb ∼ 4.1 hr; Patterson et al. 2000;

Uemura et al. 2000) and also the first black hole binary in the Galactic halo (Wagner et

al. 2001; Mirabel et al. 2001). Additionally, the ratio Lx/Lopt ≃ 5 was extremely low so

it has been suggested that XTE J1118+480 may be an Accretion Disk Corona source seen

at high inclination (Garcia et al. 2000). However, no eclipse has ever been recorded and

consequently, the source should have been intrinsically faint in X-rays (Hynes et al. 2000)

during the outburst. Finally, associated radio emission from this source has been reported

(Pooley & Waldram 2000) with jet interpretation (Fender et al. 2001).

The low interstellar absorption towards XTE J1118+480 allowed a detailed multi-

wavelength study during the 2000 outburst and quiescence being the only XRT for which

extreme ultraviolet observations could be achieved (Hynes et al. 2000; Chaty et al. 2003;

McClintock et al. 2003). In fact, the best observations of an XRT in the LH state have

been made for this system (together with GX 339-4). These observations have been of great

significance in the effort to build a physical model of the accretion flow. XTE J1118+480

has been described in terms of an ADAF (McClintock et al. 2001b; Esin et al. 2001), an Ac-

cretion Disk Corona model (Merloni, Di Matteo & Fabian 2001b) and a jet model (Markoff,

Falcke & Fender 2001; Malzac, Merloni & Fabian 2004; Yuan, Cui & Narayan 2005).

Here we report the follow-up of a new outburst of the halo black hole X-ray transient

XTE J1118+480 (hereafter J1118) and investigate the implications in modeling the structure

of accretion flows onto black holes and the mechanisms involved.
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2. Observations and reductions

Optical photometry was obtained with the 0.8 m IAC80 and the 1 m Optical Ground

Station (OGS) telescopes at the Observatorio del Teide on Tenerife, the 1.52 m telescope

at Loiano, the 1.2 m telescope at Fred Lawrence Whipple Observatory (FLWO), and the

4.2 m WHT at the Observatorio del Roque de los Muchachos on La Palma. The target was

mainly imaged in R band although we also obtained some B, V, I colors. Integration times

ranged from 10 s to 15 min depending on telescope size, atmospheric conditions and target

brightness. All images were corrected for bias and flat–fielded in the standard way using

IRAF1. We performed aperture photometry on our object and several nearby comparison

stars. We had previously performed a color-dependent calibration of a set of 14 stars in the

7’×7’ field of view using several standard stars from 6 Landolt plates (Landolt 1992).

Infrared photometry was obtained with the 1.3 m PAIRITEL2 robotic telescope at

FLWO. The camera is the 2MASS South instrument which images simultaneously in J ,

H and Ks covering a field of view of 8.5’×8.5’. A large number of dithered 7.8 s exposures

are first bias and flat-field corrected and then combined to form mosaics for each individual

visit which is typically 600 s long (see also Blake et al. 2005). For each visit, instrumental

JHKs magnitudes were extracted and consequently calibrated relative to the same 5 nearby

2MASS sources for all exposures. Photometric error estimates on the IR magnitudes are

based on a combination of Poisson statistics and the error contribution of the five reference

stars used for each observation.

The X-ray data were obtained from the RXTE ASM public archive which contains

several daily 2–12 keV scans of the source since its first recorded X-ray outburst in 2000.

Intensity measurements in three energy bands: 1.5–3, 3–5 and 5–12 keV were also recorded.

Before 2005 January 10, J1118 was never detected above the 10 mCrab one-day bin sensitiv-

ity level (Levine et al. 1996). After January 16, the available data either do not yield good

sensitivity measurements or they indicate that the flux is 10 mCrab or less.

1Image Reduction and Analysis Facility, distributed by the National Optical Astronomy Observatories

2http:// www.pairitel.org
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3. Long term light curve

We discovered an optical rebrightening of J1118 ∼5 years after its first reported outburst

(Zurita et al. 2005). We then embarked on a new campaign of systematic monitoring of the

outburst light curve in the optical and infrared bands. The source reached R = 13.37± 0.01

at the outburst peak, 5.7±0.01 mag above the mean quiescent level. In the infrared we

measured total outburst amplitudes of 4.9± 0.1, 5.0± 0.1 and 4.8± 0.1 mag in J , H and Ks

respectively. Although the optical brightening is similar to that observed during the 2000

outburst, the current event did not power the source above ∼ 25 mCrab in X-rays. Similarly,

the 2000 outburst, although also faint in X-rays, reached a peak of ∼ 45 mCrab (Wood et al.

2001). In Fig. 1 we present our overall optical/infrared light curve of the 2005 outburst. The

light curve morphology of both the X-ray and the optical emission is not the “canonical”

FRED (fast rise and exponential decay; Chen, Shrader & Livio 1997). In comparison, the

precursor X-ray light curve for the 2000 outburst shows a FRED and the March outburst

(X-ray and optical) showed a plateau morphology (see the 2000 outburst light curves in

e.g. Wren et al. 2001). We note, however, that neither the sources that remained in a LH

state, nor a large number of those which reach the HS state are FRED-shaped. We cal-

culated the hardness ratio HR2 (5-12 keV/3-5 keV) from the RXTE/ASM data. Although

only a few measurements were possible due to statistical limitations (see Fig. 1), we found

HR2=1.53±0.02 at the peak of the outburst (from HJD-2453300= 83 to 86). This value of

HR2 is consistent with a hard spectrum supporting that J1118 likely remained in the LH

state throughout the outburst (e.g. McClintock & Remillard 2005).

The shape of the 2005 outburst light curve is remarkably similar to that of the mini-

outbursts observed in GRO J0422+32 (Chevalier & Ilovaisky 1995) and XTE J1859+226

(Zurita et al. 2002b). About 30 days after the 2005 outburst peak, there is evidence for a

short-lived re-flare with amplitude of about 1 mag above the pre-event level and lasting for

about 10 days (Chou et al. 2005, see also filled triangles in Fig. 1). Furthermore, the light

curve displays a small bump just before the system definitely settled down into quiescence.

This type of behavior was also found during the mini-outbursts of both GRO J0422+32 and

XTE J1859+226 (see Fig. 2). These light curves have comparable length and brightness

and also the X-ray to optical ratio measured in J1118 is similar to what has been seen in

mini-outbursts, i.e. it is much lower than in normal outbursts (e.g., Zurita et al. 2002b).

These facts support the suggestion of Hynes et al. (2000) that the outbursts in J1118 are

indeed mini-outbursts rather than full XRT events.
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4. Optical modulation during early decline and near quiescence

Example light curves of J1118 at different outburst epochs are presented in Fig. 3. The

data have been phase folded on the orbital ephemeris of Torres et al. (2004). Note the ap-

parent changes in amplitude and morphology of the light curves as the outburst decays. We

divide the light curve in 6 different stages (see also Fig. 1): Pre-outburst quiescence (I), rise

(II), peak (III), decay (IV), near-quiescence (V) and post-outburst quiescence (VI).

(I) On 2004 December 19 (UT) J1118 was still in quiescence and displayed the character-

istic double-humped ellipsoidal modulation, with ∼0.16 mag semi-amplitude, driven by the

tidally distorted secondary star.

(II) On 2005 January 4, the outburst had already started and the R–band light curve shows

the combination of the ellipsoidal modulation and a linear rise of 0.36 mag/d.

(III) The outburst peaks on January 14 and then the brightness in all bands started to decay

at a moderately slow rate of 0.05 mag/d. Near the outburst peak, on January 20 and 22,

the R band light curve shows a low-amplitude modulation superimposed on short time scale

(. 5 s) variability likely due to flickering. This modulation was not observed after January

23 (alas, the R band data obtained in January 21 was badly affected by weather conditions).

The same modulation was also reported by Chou et al. (2005) in their V band light curves

obtained during January 18–20. This indicates that either the low-amplitude modulation

was short-lived and/or its amplitude is diluted by the flickering or undetected due to the

photometric accuracy. We searched for periodicities in the detrended light curves of Jan-

uary 20 and 22 by computing a Scargle periodogram. The result is shown in Fig. 4. The

observing window produces an alias pattern at ∼ 6.5 cycle/day with the strongest peak at

0.156±0.002 day. The 1-day alias centered at 0.169±0.003 day lies close to both the orbital

and superhump periods (see Uemura et al. 2000; Zurita et al. 2002). Although the observed

modulation is probably related to the orbital motion, the poor data sampling impedes an

accurate period determination. In Fig. 3 we show the light curve of January 20 light curve

folded on the orbital period and averaged into 50 phase bins, although the cleanest modula-

tion is seen when folding the data on 0.156 day (see left top panel of Fig. 4).

(IV) From the beginning of February the light curve began a moderately abrupt fall. We

estimated a rate of ∼ 0.15 mag/d in the R band and a smoother slope of 0.10 mag/d in the

infrared bands. On February 2, no modulation is detected but only considerable flickering
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(σm ∼0.02 mag), higher than found at the peak of the outburst.

(V) At the end of February, about 60 days after the outburst onset, J1118 settled into a near-

quiescence level at R=18.35±0.02 (Fig. 3). On February 25 the light curve is consistent with

a (distorted) double-humped ellipsoidal modulation with a semi-amplitude of ∼0.10 mag. We

also note that the amplitude of the ellipsoidal modulation is lower at near-quiescence than at

true quiescence before and after outburst. This is what we would expect if the contribution

of the accretion disk to the total light is higher in February 25 (V) than in December 19

(I) and April 26 (VI). Assuming that the decrease in flux is solely due to the accretion disk

light fading and that the disk contributed ∼55% to the total quiescent R–band light (Torres

et al. 2004), we estimate a relative contribution of the accretion disk of ∼77% during epoch V.

(VI) Two months later, J1118 faded another 0.6 mag and reached R ∼19 on March 17. The

system remained at this level from there on, suggesting it reached true quiescence. At the

same epoch we measured the following colors in the infrared: Ks=16.66±0.07, H − Ks=

0.8±0.2 and J −Ks=1.1±0.1. The J and Ks magnitudes are consistent with those observed

by Mikolajewska et al. (2005) during the pre-outburst quiescence (our epoch I). The colours

H −Ks and J −Ks are much redder than expected for a later K or early MV secondary star

suggesting an additional contribution.

The Scargle periodogram of the epoch VI R–band lightcurves (March 17, 19, 20, 23

and April 22, 26) shows a strong peak centered on 0.0845 ± 0.0005 day (see left bottom

panel of Fig. 4), consistent with half the orbital period Porb = 0.1699 day. Also, these light

curves are distorted likely due to the presence of a superhump wave, as already noticed in

the near-quiescence state at the end of the 2000 outburst (Zurita et al. 2002). In contrast,

on December 19 and January 4 (epochs I and II), there is no evidence of superhumps. This

suggests that, during outburst, the disk expands to the 3:1 (or 2:1) resonance radius and is

then forced to precess by tidal perturbations caused by the secondary star. Afterwards, it

starts to shrink although at early quiescence it is still large enough to produce superhump

waves. Finally, some time later, the disk radius becomes shorter than the resonance radius

and superhumps disappear.
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5. An optical precursor to the X-ray outburst?

There has been some evidence of optical/infrared outbursts starting before the X-ray

outbursts in some XRTs: GS 1124-684 (Della Valle, Jarvis & West 1991), GRO J1655–

40 (Orosz et al. 1997), GRO J0422+32 (Castro-Tirado, Ortiz & Gallego 1997), V404 Cyg

(Chen, Shrader & Livio 1997, and references therein), Aql X-1 (Shahbaz et al. 1998), J1118

during the main 2000 (March) outburst (Wren et al. 2001) and 4U 1543-47 (Buxton & Bailyn

2004). Also, in dwarf novae the UV rise has been observed to start several hours after the

optical outburst (e.g., Warner 1995, and references therein). In the framework of the Disk

Instability Model (see e.g., Canizzo, Chen & Livio 1995), the X-ray (or UV) delay suggests an

‘outside-in’ disturbance of the accretion disk. Once the instability is triggered in the outer

regions, a heating front propagates inwards turning the disk from the cold (quiescent) state

to a hot state. Hence the outburst is first noticed in the optical and then in X-rays (or UV).

The time scale of the lags can be explained assuming the accretion disk is truncated at some

inner radius. The heating front stops when it arrives at the truncation radius, but the inner

edge of the disk moves towards the compact object on the viscous time scale, longer than

the front propagation time. The ADAF model can offer a natural explanation for the disk

truncation in XRTs. Hence, it has been proposed that the disk inner truncation radius can

be estimated by measuring the X-ray to optical delay (Hameury et al. 1997; Wren et al. 2001).

To take advantage of the fact that our optical observations covered part of the rise

phase (see Fig. 1), we inspected whether the optical and X-ray outbursts were simultaneous

or if one lags the other. The time-resolved optical light curve taken on 2005 January 4 (see

Fig. 3) shows a linear rise. We therefore estimate the starting time for the optical rise to

be topt ≃ 2453375.1 ± 0.1 (HJD) from a linear fit to this curve. A more problematic issue

is to determine the starting time of the X-ray outburst. The X-ray light curve from ASM

does not provide any useful information below the 10 mCrab sensitivity level and hence

extrapolation is required. We estimate that the X-ray outburst starting time is consistent

with tX = 2453379.4 ± 0.7 (HJD), where the associated uncertainty quotes the differences

between the several extrapolations we performed. This implies a ∼ 4-day lag between the

onset of the X-ray and optical outbursts. Unfortunately, the ASM sensitivity level is well

above the quiescent flux level making it very likely that any extrapolation overestimates

the delay. Besides, most of the sources detected by the ASM need to brighten significantly

above quiescence to be detected (see e.g. Homan et al. 2005, for more details on this concern).

Therefore the true start of the X-ray outburst could be earlier than tX. This fact forces us

to conclude that the 4-day lag is just an upper limit as it is the 10-day lag estimated by

Wren et al. (2001). In short, although we can draw a qualitative picture of the evolution

of the accretion disk in J1118 after the outburst, it is not possible to estimate a reliable
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pre-outburst truncation radius from the X-ray delay using ASM data alone.

6. The spectral energy distribution

We constructed the spectral energy distributions (SEDs) for different outburst epochs

through the outburst. The magnitudes were first corrected for interstellar extinction using

E(B −V )=0.013 (Hynes et al. 2000) and the reddenings tabled in Rieke & Lebofsky (1985),

although this makes only a small difference in the dereddened magnitudes because the extinc-

tion is so low. Our outburst SEDs are shown in Fig. 5. Here we have excluded some nights

for clarity to avoid duplication. All SEDs are quasi-power-laws with Fν increasing toward

the blue. We have performed power-law fits to the optical SEDs only (from log ν=14.54 to

14.83), to the infrared magnitudes alone (from log ν=14.13 to 14.38) and then to the whole

wavelength range (from log ν=14.13 to 14.83). The spectral indices we found have been

plotted as a function of time and are shown in Fig. 5 (bottom panel), where Fν ∝ να.

When considering the optical data alone (open squares in Fig. 5) the source appears

steeper (bluer) than the canonical α = 1/3 of a steady state viscously heated disk, being

α = 0.49 ± 0.04 at the peak of the outburst (from HJD−2453300=85 to 90). During the

decay phase (IV), it becomes optically softer with α ∼ 0.25. This trend is consistent with

the cooling of the optically bright regions. However, when fitting the infrared alone the

trend is reversed showing that the infrared evolves very differently (open triangles) than the

optical. The joint fit (filled circles) is the interplay between these components and shows an

exponential trend becoming bluer throughout the outburst. At the decay phase the index is

consistent with α = 1/3. We will discuss the implications of the different SEDs in the next

section.

7. Summary and discussion

We present the follow-up of the new outburst of the halo black hole X-ray transient

XTE J1118+480. We estimate a total outburst amplitude of 5.7 ± 0.1 in the R band and

∼ 5 mag in the J , H and Ks-bands. The shape of the light curve is remarkably similar to

the mini-outbursts observed in GRO J0422+32 and XTE J1859+226. Furthermore, LX(1-

10 keV)/Lopt ∼5 similar to mini-outburst episodes, whereas typically this ratio is ∼500 in

normal X-ray transient outbursts.
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Quiescent XRTs are often explained by assuming an accretion disk extending down to

a certain transition radius while the inner volume is filled with a hot ADAF (e.g., Narayan,

McClintock & Yi 1996). This model predicts that, after outburst, the inner disk edge will

move farther inward. Because the efficiency of energy release in the ADAF region is very

low, the X-ray outburst starts when the densest parts of the disk can penetrate far enough

in to allow an efficient transformation of gravitational energy into radiation. The outer disk

is also expected to change. In the course of the outburst, matter diffuses inwards closing

the disk while angular momentum transferred to the outer parts forces the outer radius to

increase. If it reaches the 3:1 resonance radius, the disk will precess by tidal interaction

with the secondary star (e.g., Whitehurst & King 1991) and a superhump modulation will

be presumably visible. This was the case in March 2000 when the change in the outer disk

radius could be measured from the change in the superhump period at different stages of

the outburst (Zurita et al. 2002). Equally, in 2005 we found a 0.02-mag amplitude variation

during the early decline and also a distorted double-humped ellipsoidal modulation during

the near-quiescence level and true quiescence. This suggests that the disk expanded after

outburst to the 3:1 resonance disk radius where it remained during the early phases of qui-

escence.

Recently, the LH state of X-ray binaries has been associated with jet activity. In some

cases a jet like structure has been resolved (e.g., Mirabel et al. 1992). When jets cannot be

directly imaged, a flat or even inverted radio spectrum is often considered to be a typical

signature of jet emission (Fender et al. 2001). However, it is also apparent that the jet

contributes outside the radio band. The synchrotron spectrum, that is thought to be the

jet signature, is frequently seen at radio but also up to higher frequencies in the infrared

and possibly in the optical. In the case of J1118, the SED from radio to X-rays during the

2000 outburst has been explained as a combination of synchrotron radiation from a jet and

a truncated optically thick disk (Hynes et al. 2000; Markoff, Falcke & Fender 2001; Yuan,

Cui & Narayan 2005) whereas models assuming ADAF alone (McClintock et al. 2001b; Esin

et al. 2001) underestimated the optical and the infrared fluxes. The spectrum from infrared

to UV is flat (Fν ∼constant; Hynes et al. 2000) although the optical spectrum alone has

blue continuum slopes of α = 1/3 as expected for an optically thick accretion disk (Dubus

et al. 2001; Torres et al. 2002).

The SEDs during the 2005 outburst exhibit quasi-power-law spectra with α softening

from ∼0.49 during the peak of the X-ray outburst to ∼0.25 during the decay phase. However,

when fitting the infrared alone we find a flat spectrum with α = 0.1 ± 0.1 at the outburst

peak. This difference between the optical and the infrared SEDs, more important at the
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outburst peak, suggests that the infrared is dominated by a different component (a jet?)

whereas in the optical we are presumably seeing the disk evolution. The very flat infrared

SED (Fν ∼constant) could naturally be interpreted as a mixture of an optically thick disk

spectrum and flat-spectrum emission, possibly synchrotron. Linear fits to optical SEDs have

also been performed for other short-period black hole XRTs in outburst (see the compilation

by Hynes 2005). The optical SEDs for the Hynes (2005) relatively uniform set, exhibit

quasi-power-law spectra with α ranging between 0.5 and 1.5, all steeper than the canonical

Fν ∝ ν1/3. Two of the sources among the Hynes (2005) sample (GRO J0422+32 and XTE

J1859+226) were identified by Brocksopp, Bandyopadhyay & Fender (2004) as hard sources

(XTE J1859+226 is hard at least early in the outburst). The spectra of both sources exhibit

a quasi-exponential softening throughout the outburst whereas the other systems exhibit no

clear trends. However, very little data are available for these two systems.

Our data clearly demonstrate the added value of extending the wavelength range into

the near-infrared. We were able to witness additional spectral components that show a

different trend during the course of the outburst. Extending the wavelength coverage even

further would have allowed for a more quantitative comparison with proposed descriptions

of the accretion flows near compact objects. Looking ahead, simultaneous multi-wavelength

observations from X-rays through to radio will enable us to validate the interplay between

disks and jets. J1118 remains an excellent target for multi-wavelength studies, which needs

to be exploited with future and present facilities as we look forward to its next outburst.
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