17 research outputs found
Synergistic inhibition of prostate cancer cell lines by a 19- nor hexafluoride vitamin D3 analogue and anti-activator protein 1 retinoid
The secosteroid hormones, all- trans- and 9- cis -retinoic acid and vitamin D3, have demonstrated significant capacity to control proliferation in itro of many solid tumour cell lines. Cooperative synergistic effects by these two ligands have been reported, and it is, therefore, possible that greater therapeutic effects could be achieved if these compounds were administered together. The role of retinoid-dependent anti-activator protein 1 (anti-AP-1) effects in controlling cancer cell proliferation appears significant. We have utilized an anti- AP-1 retinoid [2-(4,4-dimethyl-3,4-dihydro-2H-1 benzopyran-6-yl)carbonyl-2-(4-carboxyphenyl)-1,3,-dithiane; SR11238], which does not transactivate through a retinoic acid response element (RARE), and a potent vitamin D3analogue [1α,25(OH)2-16-ene-23-yne-26,27-F6-19-nor -D3, code name LH] together at low, physiologically safer doses against a panel of prostate cancer cell lines that represent progressively more transformed phenotypes. The LNCaP (least transformed) and PC-3 (intermediately transformed) cell lines were synergistically inhibited in their clonal growth by the combination of LH and SR11238, whereas SR11238 alone was essentially inactive. DU-145 cells (most transformed) were completely insensitive to these analogues. LNCaP cells, but neither PC-3 nor DU-145, underwent apoptosis in the presence of LH and SR11238. Transactivation of the human osteocalcin vitamin D response element (VDRE) by LH was not enhanced in the presence of SR11238, although the expression of E-cadherin in these cells was additively up-regulated in the presence of both compounds. These data suggest the anti-AP-1 retinoid and the vitamin D3 analogue may naturally act synergistically to control cell proliferation, a process that is interrupted during transformation, and that this combination may form the basis for treatment of some androgen-independent prostate cancer. © 1999 Cancer Research Campaig
Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells
Cyr61 has been reported to participate in the development and progression of various cancers; however, its role in prostate cancer (PCa) still remains poorly understood. In this study, we explored the function of Cyr61 in a series of malignant PCa cell lines, including LnCap, Du145, and PC3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays demonstrated that Cyr61 was essential for the proliferation of PCa cells. Soft agar assay and xenograft analysis showed that downregulation of Cyr61 suppressed the tumorigenicity of Du145 cells both in vitro and in vivo. Either silencing the cellular Cyr61 by RNA interference or neutralising the endogenous Cyr61 by antibody inhibited the migration of Du145 cells. In contrast, purified protein of Cyr61 promoted the migration of LnCap cells in a dose-dependent manner. These results suggested that Cyr61 was involved in the migration of PCa cells. We also observed the accumulation of mature focal adhesion complexes associated with the impaired migration through Cyr61 downregulation. Also, further studies showed that Cyr61 regulated the level of activated Rac1 as well as its downstream targets, including phosphorylated JNK, E-cadherin, and p27kip1, which are key molecules involved in cell growth, migration, and invasion. The in vivo mouse tail vein injection experiment revealed that Cyr61 affected the metastatic capacity of Du145 cells, suggesting that Cyr61 was required for prostate tumour metastasis. Altogether, our results demonstrated that Cyr61 played an important role in the tumorigenicity and metastasis of PCa cells, which will benefit the development of therapeutic strategy for PCas
Top-quark physics at the CLIC electron-positron linear collider
ABSTRACT: The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies √s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.the Spanish Ministry of Economy, Industry and Competitiveness under projects MINEICO/FEDER-UE, FPA2015-65652-C4-3-R, FPA2015-71292-C2-1-Pand FPA2015-71956-REDT; and the MECD grant FPA2016-78645-P, Spai
Top-quark physics at the CLIC electron-positron linear collider
The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies s√ = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC