18 research outputs found

    Household labor and marital quality : perceived partner responsiveness as a buffer for unfair divisions of labor

    Get PDF
    Perceptions of household labor divisions as unfair are associated with lower marital quality, particularly for women. However, perceived partner responsiveness -- individuals' beliefs about their partner as caring, validating, and understanding to one's core needs and values -- might buffer against the effects of unfair divisions of labor. This study examined perceived partner responsiveness as a moderator of the association between individual's perceptions of fairness of the division of household labor and global marital quality. The sample consisted of married or cohabiting adults from the third wave (2012) of the National Survey of Midlife Development in the United States (MIDUS) study (N = 1923). Hierarchical regression analyses suggested that perceived partner responsiveness did function as a moderator, such that at higher levels of PPR, perceptions of the division of labor as unfair were associated with higher marital quality and lower marital strain. Contrary to hypotheses, results did not differ by gender. These findings suggest the importance of positive relationship processes, such as perceptions of partner responsiveness, as buffers against the negative effects of unfair divisions of labor for couples.Includes bibliographical reference

    Involvement of mTOR in CXCL12 Mediated T Cell Signaling and Migration

    Get PDF
    CXCL12 is a pleiotropic chemokine involved in multiple different processes such as immune regulation, inflammatory responses, and cancer development. CXCL12 is also a potent chemokine involved in chemoattraction of T cells to the site of infection or inflammation. Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that modulates different cellular processes, such as metabolism, nutrient sensing, protein translation, and cell growth. The role of mTOR in CXCL12-mediated resting T cell migration has yet to be elucidated.Rapamycin, an inhibitor of mTOR, significantly inhibits CXCL12 mediated migration of both primary human resting T cells and human T cell leukemia cell line CEM. p70(S6K1), an effector molecule of mTOR signaling pathway, was knocked down by shRNA in CEM cells using a lentiviral gene transfer system. Using p70(S6K1) knock down cells, we demonstrate the role of mTOR signaling in T cell migration both in vitro and in vivo.Our data demonstrate a new role for mTOR in CXCL12-induced T cell migration, and enrich the current knowledge regarding the clinical use of rapamycin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis

    No full text
    A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging

    Loss of miR-451a enhances SPARC production during myogenesis.

    No full text
    MicroRNAs (miRNAs) are small noncoding RNAs that critically regulate gene expression. Their abundance and function have been linked to a range of physiologic and pathologic processes. In aged monkey muscle, miR-451a and miR-144-3p were far more abundant than in young monkey muscle. This observation led us to hypothesize that miR-451a and miR-144-3p may influence muscle homeostasis. To test if these conserved microRNAs were implicated in myogenesis, we investigated their function in the mouse myoblast line C2C12. The levels of both microRNAs declined with myogenesis; however, only overexpression of miR-451a, but not miR-144-3p, robustly impeded C2C12 differentiation, suggesting an inhibitory role for miR-451a in myogenesis. Further investigation of the regulatory influence of miR-451a identified as one of the major targets Sparc mRNA, which encodes a secreted protein acidic and rich in cysteine (SPARC) that functions in wound healing and cellular differentiation. In mouse myoblasts, miR-451a suppressed Sparc mRNA translation. Together, our findings indicate that miR-451a is downregulated in differentiated myoblasts and suggest that it decreases C2C12 differentiation at least in part by suppressing SPARC biosynthesis
    corecore