256 research outputs found

    Use of anti-pronation taping to assess suitability of orthotic prescription: Case report

    Get PDF
    This case report describes a strategy for assessing the suitability of orthotic prescription for individual patients with lower limb overuse injuries. The case concerns a 32 year old male soccer player with a two-year history of Achilles tendinopathy. A functional assessment performed before, during, and after a trial period of anti-pronation taping showed that taping reduced symptoms markedly and resulted in a 10-fold increase in pain-free jogging distance. This was interpreted as an indication for favourable orthotic intervention. Subsequently, orthotic intervention was associated with a similar reduction in symptoms and improvement in function. This case study illustrates how a trial period of anti-pronation taping could assist therapists to make decisions about prescription of orthoses for lower limb overuse injuries

    Une méthode structurelle pour évaluer les propriétés d autosimilarité des plantes

    Get PDF
    National audienceContexte : L'architecture d'une plante est une notion fondamentale utilisée en botanique depuis une trentaine d'années pour parler de l'organisation des structures végétales. Cette notion fait référence à deux types principaux d'information sur la plante considérés dans l'espace et le temps: la géométrie (forme) de ses composants d'une part, et leur topologie (type et adjacence de ces mêmes composants) d'autre part. De nombreux travaux botaniques se sont intéressés à la caractérisation ces deux types d'information pour différentes espèces, variétés de plantes et conditions de développement. Pourtant, il n'existe pas à ce jour de méthode générale permettant de quantifier deux aspects fondamentaux et étroitement liés de l'étude de l'architecture des plantes : - La caractérisation de l'irrégularité (parfois très prononcée) de la forme d'une plante (de sa distribution de feuilles dans l'espace par exemple). - Le degré de similarité à toutes les échelles des systèmes ramifiés contenus dans une plante

    The effects of hip muscle strengthening on knee load, pain, and function in people with knee osteoarthritis: a protocol for a randomised, single-blind controlled trial

    Get PDF
    BACKGROUND: Lower limb strengthening exercises are an important component of the treatment for knee osteoarthritis (OA). Strengthening the hip abductor and adductor muscles may influence joint loading and/or OA-related symptoms, but no study has evaluated these hypotheses directly. The aim of this randomised, single-blind controlled trial is to determine whether hip abductor and adductor muscle strengthening can reduce knee load and improve pain and physical function in people with medial compartment knee OA. METHODS/DESIGN: 88 participants with painful, radiographically confirmed medial compartment knee OA and varus alignment will be recruited from the community and randomly allocated to a hip strengthening or control group using concealed allocation stratified by disease severity. The hip strengthening group will perform 6 exercises to strengthen the hip abductor and adductor muscles at home 5 times per week for 12 weeks. They will consult with a physiotherapist on 7 occasions to be taught the exercises and progress exercise resistance. The control group will be requested to continue with their usual care. Blinded follow up assessment will be conducted at 12 weeks after randomisation. The primary outcome measure is the change in the peak external knee adduction moment measured during walking. Questionnaires will assess changes in pain and physical function as well as overall perceived rating of change. An intention-to-treat analysis will be performed using linear regression modelling and adjusting for baseline outcome values and other demographic characteristics. DISCUSSION: Results from this trial will contribute to the evidence regarding the effect of hip strengthening on knee loads and symptoms in people with medial compartment knee OA. If shown to reduce the knee adduction moment, hip strengthening has the potential to slow disease progression. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry ACTR12607000001493

    Knee contact forces are not altered in early knee osteoarthritis.

    Get PDF
    OBJECTIVE: This study calculated knee contact forces (KCF) and its relations with knee external knee adduction moments (KAM) and/or flexion moments (KFM) during the stance phase of gait in patients with early osteoarthritis (OA), classified based on early joint degeneration on Magnetic Resonance Imaging (MRI). We aimed at assessing if altered KCF are already present in early structural degeneration. DESIGN: Three-dimensional motion and ground reaction force data in 59 subjects with medial compartment knee OA (N=23 established OA, N=16 early OA, N=20 controls) were used as input for a musculoskeletal model. KAM and KFM, and KCF were estimated using OpenSim software. RESULTS: No significant differences were found between controls and subjects with early OA. In early OA patients, KAM significantly explained 69% of the variance associated with the first peaks KCF but only KFM contributed to the second peaks KCF. The multiple correlation, combining KAM and KFM, showed to be higher. However, only 20% of the variance of second peak KCF was explained by both moments in established OA. CONCLUSION: KCF are not increased in patients with early OA, suggesting that knee joint overload is more a consequence of further joint degeneration in more advanced stages of OA. Additionally, our results clearly show that KAM is not sufficient to predict joint loading at the end of the stance, where KFM contributes substantially to the loading, especially in early OA

    Efficacy of customised foot orthoses in the treatment of achilles tendinopathy : study protocol for a randomised trial

    Get PDF
    BACKGROUND: Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. METHODS: One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria) will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam) or an experimental group (customised foot orthoses made from semi-rigid polypropylene). Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire - Version two). Data will be collected at baseline, then at 1, 3, 6 and 12 months. Data will be analysed using the intention to treat principle. DISCUSSION: This study is the first randomised trial to evaluate the long-term efficacy of customised foot orthoses for the treatment of Achilles tendinopathy. The study has been pragmatically designed to ensure that the study findings are generalisable to clinical practice. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Number: ACTRN12609000829213

    Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semi-custom foot orthoses (SCO) are thought to be a cost-effective alternative to custom-made devices. However, previous biomechanical research involving either custom or SCO has only focused on rearfoot biomechanics. The purpose of this study was therefore to determine changes in multi-segment foot biomechanics during shod walking with and without an SCO. We chose to investigate an SCO device that incorporates a heat-moulding process, to further understand if the moulding process would significantly alter rearfoot, midfoot, or shank kinematics as compared to a no-orthotic condition. We hypothesized the SCO, whether moulded or non-moulded, would reduce peak rearfoot eversion, tibial internal rotation, arch deformation, and plantar fascia strain as compared to the no-orthoses condition.</p> <p>Methods</p> <p>Twenty participants had retroreflective markers placed on the right limb to represent forefoot, midfoot, rearfoot and shank segments. 3D kinematics were recorded using an 8-camera motion capture system while participants walked on a treadmill.</p> <p>Results</p> <p>Plantar fascia strain was reduced by 34% when participants walked in either the moulded or non-moulded SCO condition compared to no-orthoses. However, there were no significant differences in peak rearfoot eversion, tibial internal rotation, or medial longitudinal arch angles between any conditions.</p> <p>Conclusions</p> <p>A semi-custom moulded orthotic does not control rearfoot, shank, or arch deformation but does, however, reduce plantar fascia strain compared to walking without an orthoses. Heat-moulding the orthotic device does not have a measurable effect on any biomechanical variables compared to the non-moulded condition. These data may, in part, help explain the clinical efficacy of orthotic devices.</p

    Serum levels of Cartilage Oligomeric Matrix Protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis

    Get PDF
    BACKGROUND: COMP (Cartilage oligomeric matrix protein) is a matrix protein, which is currently studied as a potential serum marker for cartilage processes in osteoarthritis (OA). The influence of physical exercise on serum COMP is not fully elucidated. The objective of the present study was to monitor serum levels of COMP during a randomised controlled trial of physical exercise vs. standardised rest in individuals with symptomatic and radiographic knee OA. METHODS: Blood samples were collected from 58 individuals at predefined time points before and after exercise or rest, one training group and one control group. The physical exercise consisted of a one-hour supervised session twice a week and daily home exercises. In a second supplementary study 7 individuals were subjected to the same exercise program and sampling of blood was performed at fixed intervals before, immediately after, 30 and 60 minutes after the exercise session and then with 60 minutes interval for another five hours after exercise to monitor the short-term changes of serum COMP. COMP was quantified with a sandwich-ELISA (AnaMar Medical, Lund, Sweden). RESULTS: Before exercise or rest no significant differences in COMP levels were seen between the groups. After 60 minutes exercise serum COMP levels increased (p < 0.001). After 60 minutes of rest the serum levels decreased (p = 0.003). Median serum COMP values in samples obtained prior to exercise or rest at baseline and after 24 weeks did not change between start and end of the study. In the second study serum COMP was increased immediately after exercise (p = 0.018) and had decreased to baseline levels after 30 minutes. CONCLUSION: Serum COMP levels increased during exercise in individuals with knee OA, whereas levels decreased during rest. The increased serum COMP levels were normalized 30 minutes after exercise session, therefore we suggest that samples of blood for analysis of serum COMP should be drawn after at least 30 minutes rest in a seated position. No increase was seen after a six-week exercise program indicating that any effect of individualized supervised exercise on cartilage turnover is transient

    A case-series study to explore the efficacy of foot orthoses in treating first metatarsophalangeal joint pain

    Get PDF
    Background: First metatarsophalangeal (MTP) joint pain is a common foot complaint which is often considered to be a consequence of altered mechanics. Foot orthoses are often prescribed to reduce 1 stMTP joint pain with the aim of altering dorsiflexion at propulsion. This study explores changes in 1 stMTP joint pain and kinematics following the use of foot orthoses.Methods: The effect of modified, pre-fabricated foot orthoses (X-line ®) were evaluated in thirty-two patients with 1 stMTP joint pain of mechanical origin. The primary outcome was pain measured at baseline and 24 weeks using the pain subscale of the foot function index (FFI). In a small sub-group of patients (n = 9), the relationship between pain and kinematic variables was explored with and without their orthoses, using an electromagnetic motion tracking (EMT) system.Results: A significant reduction in pain was observed between baseline (median = 48 mm) and the 24 week endpoint (median = 14.50 mm, z = -4.88, p &lt; 0.001). In the sub-group analysis, we found no relationship between pain reduction and 1 stMTP joint motion, and no significant differences were found between the 1 stMTP joint maximum dorsiflexion or ankle/subtalar complex maximum eversion, with and without the orthoses.Conclusions: This observational study demonstrated a significant decrease in 1 stMTP joint pain associated with the use of foot orthoses. Change in pain was not shown to be associated with 1 stMTP joint dorsiflexion nor with altered ankle/subtalar complex eversion. Further research into the effect of foot orthoses on foot function is indicated. © 2010 Welsh et al; licensee BioMed Central Ltd

    Foot posture in people with medial compartment knee osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foot posture has long been considered to contribute to the development of lower limb musculoskeletal conditions as it may alter the mechanical alignment and dynamic function of the lower limb. This study compared foot posture in people with and without medial compartment knee osteoarthritis (OA) using a range of clinical foot measures. The reliability of the foot measures was also assessed.</p> <p>Methods</p> <p>The foot posture of 32 patients with clinically and radiographically-confirmed OA predominantly in the medial compartment of the knee and 28 asymptomatic age-matched healthy controls was investigated using the foot posture index (FPI), vertical navicular height and drop, and the arch index. Independent t tests and effect size (Cohen's d) were used to investigate the differences between the groups in the foot posture measurements.</p> <p>Results</p> <p>Significant differences were found between the control and the knee OA groups in relation to the FPI (1.35 ± 1.43 vs. 2.46 ± 2.18, p = 0.02; <it>d </it>= 0.61, medium effect size), navicular drop (0.02 ± 0.01 vs. 0.03 ± 0.01, p = 0.01; <it>d </it>= 1.02, large effect size) and the arch index (0.22 ± 0.04 vs. 0.26 ± 0.04, p = 0.04; <it>d </it>= 1.02, large effect size). No significant difference was found for vertical navicular height (0.24 ± 0.03 vs. 0.23 ± 0.03, p = 0.54; <it>d </it>= 0.04, negligible effect size).</p> <p>Conclusion</p> <p>People with medial compartment knee OA exhibit a more pronated foot type compared to controls. It is therefore recommended that the assessment of patients with knee OA in clinical practice should include simple foot measures, and that the potential influence of foot structure and function on the efficacy of foot orthoses in the management of medial compartment knee OA be further investigated.</p
    corecore