548 research outputs found

    The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments

    Get PDF
    Global climate change and localized anthropogenic stressors are driving rapid declines in coral reef health. In vitro experiments have been fundamental in providing insight into how reef organisms will potentially respond to future climates. However, such experiments are inevitably limited in their ability to reproduce the complex interactions that govern reef systems. Studies examining coral communities that already persist under naturally-occurring extreme and marginal physicochemical conditions have therefore become increasingly popular to advance ecosystem scale predictions of future reef form and function, although no single site provides a perfect analog to future reefs. Here we review the current state of knowledge that exists on the distribution of corals in marginal and extreme environments, and geographic sites at the latitudinal extremes of reef growth, as well as a variety of shallow reef systems and reef-neighboring environments (including upwelling and CO 2 vent sites). We also conduct a synthesis of the abiotic data that have been collected at these systems, to provide the first collective assessment on the range of extreme conditions under which corals currently persist. We use the review and data synthesis to increase our understanding of the biological and ecological mechanisms that facilitate survival and success under sub-optimal physicochemical conditions. This comprehensive assessment can begin to: (i) highlight the extent of extreme abiotic scenarios under which corals can persist, (ii) explore whether there are commonalities in coral taxa able to persist in such extremes, (iii) provide evidence for key mechanisms required to support survival and/or persistence under sub-optimal environmental conditions, and (iv) evaluate the potential of current sub-optimal coral environments to act as potential refugia under changing environmental conditions. Such a collective approach is critical to better understand the future survival of corals in our changing environment. We finally outline priority areas for future research on extreme and marginal coral environments, and discuss the additional management options they may provide for corals through refuge or by providing genetic stocks of stress tolerant corals to support proactive management strategies

    Climate refugia on the Great Barrier Reef fail when global warming exceeds 3°C.

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. DATA AVAILABILITY STATEMENT: These data are available through Zenodo as the data were used in a previous paper (McWhorter et al., 2021), https://zenodo.org/record/5534875#.YnvfQOjMKUm. The code in this study is available by request.Increases in the magnitude, frequency, and duration of warm seawater temperatures are causing mass coral mortality events across the globe. Although, even during the most extensive bleaching events, some reefs escape exposure to severe stress, constituting potential refugia. Here, we identify present-day climate refugia on the Great Barrier Reef (GBR) and project their persistence into the future. To do this, we apply semi-dynamic downscaling to an ensemble of climate projections released for the IPCC's recent sixth Assessment Report. We find that GBR locations experiencing the least thermal stress over the past 20 years have done so because of their oceanographic circumstance, which implies that longer-term persistence of climate refugia is feasible. Specifically, tidal and wind mixing of warm water away from the sea surface appears to provide relief from warming. However, on average this relative advantage only persists until global warming exceeds ~3°C.UKRICooperative Institute for Satellite Earth System Studie

    An MPA design approach to benefit fisheries: maximising larval export and minimising redundancy

    Get PDF
    In the design of marine protected areas (MPAs), tailoring reserve placement to facilitate larval export beyond reserve boundaries may support fished populations and fisheries through recruitment subsidies. Intuitively, capturing such connectivity could be purely based on optimising larval dispersal metrics such as export strength. However, this can lead to inefficient or redundant larval connectivity, as the subset of sites with the best connectivity metrics might share many of the same connections, making them, collectively, poor MPA candidates to provide recruitment subsidies to unprotected sites. We propose a simple, dynamic algorithm for reserve placement optimisation designed to select MPAs sequentially, maximising larval export to the overall network, whilst accounting for redundancy in supply from multiple sources. When applied to four regions in the Caribbean, the algorithm consistently outperformed approaches that did not consider supply redundancy, leading to, on average, 20% greater fished biomass in a simulated model. Improvements were most apparent in dense, strongly connected systems such as the Bahamas. Here, MPA placement without redundancy considerations produced fishery benefits worse than random MPA design. Our findings highlight the importance of considering redundancy in MPA design, and offer a novel, simple approach to improving MPA design for achieving fishery objectives

    Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis

    Get PDF
    This is the final version of the article. Available from the Royal Society via the DOI in this record.The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described.This project was funded primarily by an NERC grant, no. NE/E010393/1 (J.R.S. and P.J.M.), European Union FP7 project Future of Reefs in a Changing Environment (FORCE) under grant agreement no. 244161 (P.J.M. and J.R.S.) and a University of Exeter studentship (E.V.K.)

    Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities

    Get PDF
    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems

    The importance of 1.5°C warming for the Great Barrier Reef

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData and code availability. The data that support the findings of this study are openly available in Zenodo at https://doi.org/10.5281/zenodo.5534875Tropical coral reefs are among the most sensitive ecosystems to climate change and will benefit from the more ambitious aims of the United Nations Framework Convention on Climate Change’s Paris Agreement, which proposed to limit global warming to 1.5° rather than 2°C above pre-industrial levels. Only in the latest IPCC focussed assessment, the Coupled Model Intercomparison Project phase 6 (CMIP6), have climate models been used to investigate the 1.5° warming scenario directly. Here, we combine the most recent model updates from CMIP6 with a semi-dynamic downscaling to evaluate the difference between the 1.5°C and 2°C global warming targets on coral thermal stress metrics for the Great Barrier Reef. By ~2080, severe bleaching events are expected to occur annually under intensifying emissions (Shared Socioeconomic Pathway SSP5-8.5). Adherence to 2° warming (SSP1-2.6) halves this frequency but the main benefit of confining warming to 1.5° (SSP1-1.9) is that bleaching events are reduced further to 3 events per decade. Attaining low emissions of 1.5° is also paramount to prevent the mean magnitude of thermal stress from stabilizing close to a critical thermal threshold (8 DHW). Thermal stress under the more pessimistic pathways SSP3-7.0 and SSP5-8.5 is 3- to 4-fold higher than present day, with grave implications for future reef ecosystem health. As global warming continues, our projections also indicate more regional warming in the central and southern Great Barrier Reef than the far north and northern Great Barrier Reef.QUEX InstituteNatural Environment Research Council (NERC)Australian Research Council (ARC)NOA

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Connectivity and systemic resilience of the Great Barrier Reef

    Get PDF
    Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change
    • …
    corecore