127 research outputs found

    AMADEUS: Towards the AutoMAteD secUrity teSting

    Get PDF
    The proper configuration of systems has become a fundamental factor to avoid cybersecurity risks. Thereby, the analysis of cyber security vulnerabilities is a mandatory task, but the number of vul nerabilities and system configurations that can be threatened is ex tremely high. In this paper, we propose a method that uses software product line techniques to analyse the vulnerable configuration of the systems. We propose a solution, entitled AMADEUS, to enable and support the automatic analysis and testing of cybersecurity vulnerabilities of configuration systems based on feature models. AMADEUS is a holistic solution that is able to automate the analy sis of the specific infrastructures in the organisations, the existing vulnerabilities, and the possible configurations extracted from the vulnerability repositories. By using this information, AMADEUS generates automatically the feature models, that are used for rea soning capabilities to extract knowledge, such as to determine attack vectors with certain features. AMADEUS has been validated by demonstrating the capacities of feature models to support the threat scenario, in which a wide variety of vulnerabilities extracted from a real repository are involved. Furthermore, we open the door to new applications where software product line engineering and cybersecurity can be empowered.Ministerio de Ciencia, Innovación y Universidades RTI2018-094283-B-C33 (ECLIPSE)Junta de Andalucía P20-01224 (COPERNICA)Junta de Andalucía US-1381375 (METAMORFOSIS

    A Practical Entity Linking System for Tables in Scientific Literature

    Full text link
    Entity linking is an important step towards constructing knowledge graphs that facilitate advanced question answering over scientific documents, including the retrieval of relevant information included in tables within these documents. This paper introduces a general-purpose system for linking entities to items in the Wikidata knowledge base. It describes how we adapt this system for linking domain-specific entities, especially for those entities embedded within tables drawn from COVID-19-related scientific literature. We describe the setup of an efficient offline instance of the system that enables our entity-linking approach to be more feasible in practice. As part of a broader approach to infer the semantic meaning of scientific tables, we leverage the structural and semantic characteristics of the tables to improve overall entity linking performance

    8-Chloro-5,5-dimethyl-5,6-dihydro­tetra­zolo[1,5-c]quinazoline

    Get PDF
    In the title compound, C10H10ClN5, the tetra­zole ring and the phenyl ring make a dihedral angle of 7.7 (2)°. The hexa­hydro­pyrimidine ring adopts a screw-boat conformation. In the crystal, inter­molecular bifurcated N—H⋯(N,N) hydrogen bonds link the mol­ecules into [001] chains

    Extracting novel facts from tables for Knowledge Graph completion

    Get PDF
    We propose a new end-to-end method for extending a Knowledge Graph (KG) from tables. Existing techniques tend to interpret tables by focusing on information that is already in the KG, and therefore tend to extract many redundant facts. Our method aims to find more novel facts. We introduce a new technique for table interpretation based on a scalable graphical model using entity similarities. Our method further disambiguates cell values using KG embeddings as additional ranking method. Other distinctive features are the lack of assumptions about the underlying KG and the enabling of a fine-grained tuning of the precision/recall trade-off of extracted facts. Our experiments show that our approach has a higher recall during the interpretation process than the state-of-the-art, and is more resistant against the bias observed in extracting mostly redundant facts since it produces more novel extractions
    corecore