7 research outputs found

    OpenPhi: an interface to access Philips iSyntax whole slide images for computational pathology

    Get PDF
    Digital pathology enables applying computational methods, such as deep learning, in pathology for improved diagnostics and prognostics, but lack of interoperability between whole slide image formats of different scanner vendors is a challenge for algorithm developers. We present OpenPhi-Open PatHology Interface, an Application Programming Interface for seamless access to the iSyntax format used by the Philips Ultra Fast Scanner, the first digital pathology scanner approved by the United States Food and Drug Administration. OpenPhi is extensible and easily interfaced with existing vendor-neutral applications

    Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction

    Get PDF
    Unreliable predictions can occur when an artificial intelligence (AI) system is presented with data it has not been exposed to during training. We demonstrate the use of conformal prediction to detect unreliable predictions, using histopathological diagnosis and grading of prostate biopsies as example. We digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic study, used for training, and 3059 biopsies from 676 men used for testing. With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer diagnosis (compared to 14 errors [2%] without conformal prediction) while 175 (22%) of the predictions are flagged as unreliable when the AI-system is presented with new data from the same lab and scanner that it was trained on. Conformal prediction could with small samples (N = 49 for external scanner, N = 10 for external lab and scanner, and N = 12 for external lab, scanner and pathology assessment) detect systematic differences in external data leading to worse predictive performance. The AI-system with conformal prediction commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue compared to 44 (25%) without conformal prediction, while the system flags 143 (80%) unreliable predictions. We conclude that conformal prediction can increase patient safety of AI-systems.publishedVersionPeer reviewe

    Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps

    Get PDF
    Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under- and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments.Patient summaryThis mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories.</p

    The Importance Of Skip Connections In Encoder-Decoder Architectures For Colorectal Polyp Detection

    No full text
    Accurate polyp detection during the colonoscopy procedure impacts colorectal cancer prevention and early detection. In this paper, we investigate the influence of skip connections as the main component of encoder-decoder based convolutional neural network (CNN) architectures for colorectal polyp detection. We conduct experiments on long and short skip connections and further extend the existing architecture by introducing dense lateral skip connections. The proposed segmentation architecture utilizes short skip connections in the contracting path, moreover it utilizes dense long and lateral skip connections in between the contracting and expanding path. Results obtained from the MICCAI 2015 Challenge dataset show progressive improvement of the segmentation result with expanded utilization of skip connections. The proposed colorectal polyp segmentation architecture achieves performance comparable to the state-of-the-art under significantly reduced number of model parameters

    Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps

    Get PDF
    Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under-and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments. Patient summary: This mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories

    Interobserver reproducibility of cribriform cancer in prostate needle biopsies and validation of International Society of Urological Pathology criteria

    Get PDF
    Aims: There is strong evidence that cribriform morphology indicates a worse prognosis of prostatic adenocarcinoma. Our aim was to investigate its interobserver reproducibility in prostate needle biopsies. Methods and results: A panel of nine prostate pathology experts from five continents independently reviewed 304 digitised biopsies for cribriform cancer according to recent International Society of Urological Pathology criteria. The biopsies were collected from a series of 702 biopsies that were reviewed by one of the panellists for enrichment of high-grade cancer and potentially cribriform structures. A 2/3 consensus diagnosis of cribriform and noncribriform cancer was reached in 90% (272/304) of the biopsies with a mean kappa value of 0.56 (95% confidence interval 0.52–0.61). The prevalence of consensus cribriform cancers was estimated to 4%, 12%, 21%, and 20% of Gleason scores 7 (3 + 4), 7 (4 + 3), 8, and 9–10, respectively. More than two cribriform structures per level or a largest cribriform mass with ≥9 lumina or a diameter of ≥0.5 mm predicted a consensus diagnosis of cribriform cancer in 88% (70/80), 84% (87/103), and 90% (56/62), respectively, and noncribriform cancer in 3% (2/80), 5% (5/103), and 2% (1/62), respectively (all P < 0.01). Conclusion: Cribriform prostate cancer was seen in a minority of needle biopsies with high-grade cancer. Stringent diagnostic criteria enabled the identification of cribriform patterns and the generation of a large set of consensus cases for standardisation
    corecore