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Abstract

Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical
management of men with prostate cancer. Despite this, the high grading variability
among pathologists leads to the potential for under- and overtreatment. Artificial
intelligence (AI) systems have shown promise in assisting pathologists to perform
Gleason grading, which could help address this problem. In this mini-review, we
highlight studies reporting on the development of AI systems for cancer detection
and Gleason grading, and discuss the progress needed for widespread clinical imple-
mentation, as well as anticipated future developments.
Patient summary: This mini-review summarizes the evidence relating to the validation
of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate
cancer in biopsies, and highlights the remaining steps required prior to its widespread
clinical implementation. We found that, although there is strong evidence to show that
AI is able to perform Gleason grading on par with experienced uropathologists, more
work is needed to ensure the accuracy of results from AI systems in diverse settings
across different patient populations, digitization platforms, and pathology laboratories.
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Diagnosis and Gleason grading of prostate cancer in biop-
sies are critical to the clinical management of men sus-
pected to have prostate cancer; however, the high level of
variability in Gleason grading between pathologists poses
clinical challenges. This can lead to both under- and over-
treatment, which impacts patient morbidity, mortality, and
healthcare costs. The advent of digital pathology permits
the development of artificial intelligence (AI) systems for
assisting pathologists in the evaluation of prostate biopsies.
Such AI systems have shown promise with respect to cancer
detection and Gleason grading, and are a potential solution
to the problem of high interpathologist variability. In this
mini-review, we summarize the current status for AI-based
diagnosis and Gleason grading of prostate cancer in biopsies
and discuss the potential for future developments.

The first attempt to use techniques based on deep neural
networks for the detection of cancer on prostate biopsies
was reported by Litjens and colleagues [1], who showed
early promising results in a study limited by the size of the
data. Three years later, in 2019 Campanella and colleagues
showed an area under the receiver operating characteristics
curve (AUC) of 0.991 for cancer detection on an independent
test dataset and 0.943 on external validation data [2]. The
study by Campanella et al [2] used a large dataset (n = 12
132 slides) to train the deep learning model using only the
reported diagnoses as labels for training, thus circumnavi-
gating the labor-intensive collection of detailed pixel-wise
manual annotations. In a recent external validation study of
the algorithm developed in Campanella et al [2], Perincheri
and colleagues [3] showed that the algorithm achieved
97.7% sensitivity at a specificity level of 99.3%.

Early attempts at applying machine learning and AI to
not only detect cancer in prostate biopsies, but also perform
Gleason grading showed promise, but were constrained by
the limited availability of training data [4⬜6]. In 2020, three
studies independently demonstrated that AI systems can
perform both cancer detection and Gleason grading with
performance on par with expert uropathologists (Table 1)
[7⬜9]. Specifically, Ström et al [7] used 6953 biopsies
mainly from the STHLM3 population⬜based prostate can-
cer screening trial to train an AI system that demonstrated a
mean pairwise linearly weighted Cohen⬢s kappa statistic
of 0.62. This was within the range of the corresponding
values of 23 experienced urological pathologists from the
International Society of Urological Pathology⬢s Imagebase
grading reference panel (0.60⬜0.73). In a second study,
Bulten et al [8] showed that a deep learning system trained
on 4712 biopsies had higher agreement (quadratic kappa
0.854), with a consensus reference standard defined by
three expert urological pathologists, than that of a panel
of international pathologists (median kappa 0.819), out-
performing ten of the 15 study pathologists [5]. Finally,
Nagpal et al [9] demonstrated that an AI system trained
on a combination of prostatectomy samples (n = 1226) and
biopsies (n = 524) had significantly higher agreement with
the diagnosis of subspecialist pathologists than that
achieved by general pathologists (71.7% vs 58.0%). When
two of these AI systems were used by pathologists in
research settings, AI-assisted pathologists were able to
achieve higher agreements with panels of urological pathol-
ogists than in an unassisted setting [10,11]. Further evidence
for AI-based Gleason grading was provided by Pantanowitz
et al [12], who demonstrated an AUC of 0.941 for discrimi-
nating between Gleason score 6 and Gleason score Ⱕ7 on
external validation data, as well as by Mun et al [13], who
recently demonstrated moderate agreement between AI
Gleason grading and pathologists on internal and external
test data for an AI system trained on 6664 biopsy cores. All
these studies also showed accurate results for cancer detec-
tion, with AUCs ranging from 0.943 to 0.99 on external
validation data (Table 1) [7⬜9,12,13].

Although the results for Gleason grading are promising,
it should be noted that the AI algorithms were validated by
the same research groups that developed them, using lim-
ited external data. It is clear that, before AI systems for
Gleason grading can be considered suitable for introduction
into routine clinical practice, there is a need for further
validation utilizing independent datasets from diverse and
international populations. Development of AI systems that
generalize across varying data sources represents one of the
central barriers to the clinical adoption of AI algorithms. The
questions that arise are as follows: How do we address the
current limitations? What is needed for this technology to
achieve clinical implementation and bring value to
patients?

Fundamental to these questions are the limits of the
capabilities of AI systems. It is well known that deep learn-
ing systems are susceptible to changes in input data
[14]. Biopsies sampled from different patient populations,
processing of tissues in different laboratories, and images
scanned on different hardware platforms may impact AI
performance. Similarly, further development and testing
are required to permit the recognition of benign mimics
of cancer and deceptively bland morphological variants of
prostatic adenocarcinoma. The collection of larger and more
diverse datasets for training AI systems will undoubtedly
result in improved capacity. Recently, we organized the
Prostate cANcer graDe Assessment (PANDA) competition
for the development of AI algorithms for Gleason grading of
prostate biopsies. By pooling data sources from the studies
of Ström et al [7], Bulten et al [8], and Nagpal et al [9], we
could demonstrate that top performing algorithms gener-
alize across multisite, international populations and refer-
ence standards with high accuracy [15]. The benefits of large
and diverse datasets for training and validation are clear,
and it is therefore encouraging that initiatives similar to the
large genome-wide association studies consortia are
emerging also for histopathology images [16,17]. Ultimately,
AI systems for the pathological assessment of prostate
biopsies need to demonstrate their value in prospective
and well-designed clinical trials, as well as in controlled
implementation studies.

Irrespective of the quality of AI systems for Gleason
grading, there is always a risk that unusual cases cannot
reliably be assigned a grade. We therefore believe that a key
component for the clinical implementation of AI algorithms
is the development of anomaly detection systems that can
quantify the confidence in predictions and serve as quality



Table 1 – Publications describing algorithms for detection and grading of prostate cancer in core needle biopsiesa

Article Dataset size for
training and
tuning

Dataset size for
internal testing

Dataset size for
external
validation

Outcomes Summary of main findings

Campanella et al
(2019) [2]

10 348 slides from
711 cases

1784 slides from
125 cases

12 727 slides from
6323 cases

Cancer detection AUC of 0.991 for discriminating between slides
with cancer present and slides with only benign
tissue on internal test data; AUC of 0.932 on
external validation sets. Clinical application
would allow pathologists to exclude 65⬜75% of
slides while retaining 100% sensitivity

Ström et al
(2020) [7]

6953 biopsy cores
from 1069 cases

1718 biopsy cores
from 333 cases

330 biopsy cores
from 73 cases

Cancer detection, Gleason
score, cancer length (mm)

AUC of 0.997 for discriminating between biopsy
cores with cancer present and cores with only
benign tissue on internal test data; AUC of
0.986 on external validation sets. Gleason
grading and estimates of cancer length (mm) on
internal test data demonstrated to be on par with
uropathologists

Bulten et al
(2020) [8]

5209 biopsy cores
from 1033 cases

550 biopsy cores
from 210 cases

245 tissue
microarrays from
245 cases

Cancer detection, Gleason
score

AUC of 0.99 for discriminating between biopsy
cores with cancer present and cores with only
benign tissue on internal test data; AUC of
0.98⬜0.99 on external validation sets. Gleason
grading on internal test data demonstrated to
have higher concordance with uropathologist
consensus reference standard than with general
pathologists

Nagpal et al
(2020) [9]

1557 slides from
prostatectomies of
758 cases plus
524 biopsy cores
form 360 cases

430 biopsy cores
from 430 cases

331 biopsy cores
from 331 cases

Cancer detection, Gleason
score

Accuracy of 94.3% for distinguishing biopsy cores
containing cancer from those without. AI
Gleason grading showed significantly higher
agreement with expert uropathologists than
with general pathologists

Pantanowitz et al
(2020) [12]

549 slides 2501 slides from
213 cases

1627 slides from
100 cases
organized into
389 parts b

Cancer detection, Gleason
score 6 vs Ⱕ7; detection of
atypical small acinar
proliferation (ASAP) and
perineural invasion (PNI)

AUC of 0.997 for discriminating between slides
with cancer present and slides with only benign
tissue on internal test data; AUC of 0.991 on
external validation sets for discrimination
between parts with or without cancer. AUC of
0.941 for discriminating between parts with
Gleason score 6 or ASAP and Gleason score Ⱕ7.
AUC of 0.957 for discriminating between parts
with cancer with PNI and those without

Perincheri et al
(2021) [3]

NA b NA c 1876 biopsy cores
from 118 cases

Cancer detection, atypia,
high-grade prostatic
intraepithelial neoplasia

Sensitivity of 97.7% and positive predictive value
of 97.9%, and specificity of 99.3% and a negative
predictive value of 99.2% in identifying core
biopsies with cancer

Mun et al (2021)
[13]

6664 biopsy cores
from 689 cases

936 biopsy cores
from 99 cases

244 tissue
microarrays from
244 cases

Cancer detection, Gleason
score

AUC of 0.983 for discriminating between biopsy
cores with cancer present and cores with only
benign tissue on internal test data; AUC of
0.943 on external validation sets. Moderate
agreement between AI Gleason grading and
pathologists on internal and external test data

AI = artificial intelligence; AUC = area under the receiver operating characteristics curve; NA = not available.
a The table summarized large studies with reporting of results on external validation data.
b A ⬓part⬽ is one of three biopsy regions (upper, mid, or base) in one of the prostate lobes.
c Perincheri et al [3] describe the results of an external validation of the AI algorithm developed by Campanella et al [2] and thus do not concern the training of
the AI model.
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control. Such systems should be able to detect occasions
when an AI algorithm is presented with data that are
outside its applicability limits, necessitating human inter-
vention. This would ensure that only valid input data are
used and that only valid predictions are made. So far, little
work relating to this has been published, although methods
for constructing quality control systems, such as conformal
prediction and multihead convolutional neural networks,
exist [18,19].

Beyond reaching a mature enough state for clinical
implementation, what developments can we expect to
see within this field in the coming years? Ultimately, the
goal of AI systems is not to reproduce assessments of
pathologists, but to improve upon them to provide more
accurate prognostication. One way to achieve this is to
directly train AI algorithms against long-term follow-up
data, such as time to development of metastases or time
to death in large cohort studies. There are, however, major
challenges in achieving this. A major issue is the size of the
training data: millions of data points can be easily obtained
for training AI systems to perform Gleason grading by using
all ten to 12 biopsy cores obtained from a single patient and
by extracting thousands of smaller images⬝patches⬝from
each biopsy image. In contrast, a man develops metastases



Fig. 1 – Future AI-assisted prostate cancer diagnosis and prognosis. (A) Current AI systems have shown that they can perform Gleason grading on par
with expert uropathologists and that they can assist pathologists to achieve higher agreement with consensus grading. Current development also
indicates that AI systems may be trained using long-term outcomes to achieve higher agreement with prognosis. (B) AI has the potential to leverage
and integrate the increasingly complex data collected during the prostate cancer diagnostic workup process, in order to improve prognostication and
treatment selection. Data from initial risk stratification based on modern prediction models can be integrated with magnetic resonance imaging scans
and histological imaging data within AI systems. In addition, tumor profiling using sequencing of tissue or circulating tumor DNA can be integrated to
predict prognosis and optimize treatment. AI = artificial intelligence.
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or dies only once, meaning that there is only a single event
for each man that can be used for model training. The
limitations of retrospective study design also present chal-
lenges, both with respect to historical cohorts not being
representative in a contemporary treatment setting and for
model evaluation. In historical cases, the original treatment
choice was based on the Gleason score assigned by the
pathologist. The statistical consequence of this is that the
strength of the association between the pathologists⬢
Gleason score and longer-term outcomes can be severely
biased toward the null. In fact, even if Gleason grading by
pathologists had a stronger association with longer-term
outcomes than the AI model, this bias could cause the
results to be reversed [20,21]. Despite these challenges,
development of AI systems to improve prognostication is
clearly a path that we should explore, as its value to patients
could be substantial. This also opens the potential for
developing AI systems that combine histopathology infor-
mation with other data sources such as information from
magnetic resonance imaging, genomic information, and
biomarkers in multimodal AI systems. This is an exciting
vision for harnessing the increasingly data-rich prostate
cancer diagnostic pipeline to better predict prognosis and
optimize treatment (Fig. 1). Further useful advances would
be development of AI algorithms for cancer detection in
frozen section analysis. Such systems could assist with the
interpretation of surgical margins from the prostate speci-
men after radical prostatectomy, to improve surgical
outcomes.

Author contributions: Martin Eklund had full access to all the data in the
study and takes responsibility for the integrity of the data and the
accuracy of the data analysis.

Study concept and design: Kartasalo, Bulten, Pinckaers, Olsson, Mulliqi, Ji,
Eklund.



E U R O P E A N U R O L O G Y F O C U S 7 ( 2 0 2 1 ) 6 8 7 – 6 9 1 691
Acquisition of data: Delahunt, Chen, Samaratunga, Tsuzuki, Egevad,
Wählby, Ruusuvuori, Lindberg, Rantalainen, Litjens, Eklund.
Analysis and interpretation of data: Kartasalo, Bulten, Pinckaers, Olsson,
Mulliqi, Ji, Egevad, Eklund.
Drafting of the manuscript: Kartasalo, Eklund.
Critical revision of the manuscript for important intellectual content: All
authors.
Statistical analysis: Kartasalo, Bulten, Eklund.
Obtaining funding: Eklund, Rantalainen, Lindberg, Egevad, Litjens, Ruu-
suvuori, Wählby.
Administrative, technical, or material support: Kartasalo, Mulliqi, Olsson, Ji.
Supervision: Eklund, Egevad.
Other: None.

Financial disclosures: Martin Eklund certifies that all conflicts of inter-
est, including specific financial interests and relationships and affilia-
tions relevant to the subject matter or materials discussed in the manu-
script (eg, employment/affiliation, grants or funding, consultancies,
honoraria, stock ownership or options, expert testimony, royalties, or
patents filed, received, or pending), are the following: None. P.-H.C.C. is
an employee of Google LLC and owns Alphabet stock.

Funding/Support and role of the sponsor: This work was supported by
the Swedish Research Council (2019-01466,2020-00692 and 2018-
03056), the Swedish Cancer Society (CAN 2018/741 and 200906PjF01H),
Academy of Finland grants #341967, #334782 and #335976, and Cancer
Foundation Finland. The funders have no role in the collection, analysis,
interpretation, manuscript writing, or decision to submit the manuscript.

References

[1] Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for
increased accuracy and efficiency of histopathological diagnosis. Sci
Rep 2016;6:26286.

[2] Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade compu-
tational pathology using weakly supervised deep learning on whole
slide images. Nat Med 2019;25:1301–9.

[3] Perincheri S, Levi AW, Celli R, et al. An independent assessment of an
artificial intelligence system for prostate cancer detection shows
strong diagnostic accuracy. Mod Pathol 2021;34:1588–95. http://
dx.doi.org/10.1038/s41379-021-00794-x.

[4] Gummeson A, Arvidsson I, Ohlsson M, et al. Automatic Gleason
grading of H&E stained microscopic prostate images using deep
convolutional neural networksMedical imaging 2017: digital
pathology. SPIE; 2017. p. 101400S.

[5] Jafari-Khouzani K, Soltanian-Zadeh H. Multiwavelet grading of
pathological images of prostate. IEEE Trans Biomed Eng
2003;50:697–704.
[6] Källén H, Molin J, Heyden A, et al. Towards grading Gleason score
using generically trained deep convolutional neural networks.
2016 IEEE 13th International Symposium on Biomedical Imaging
(ISBI) 2016;1163–7.

[7] Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for
diagnosis and grading of prostate cancer in biopsies: a popula-
tion-based, diagnostic ssue>222232.

[8] Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning
system for Gleason grading of prostate cancer using biopsies: a
diagnostic study. Lancet Oncol 2020;21:233–41.

[9] Nagpal K, Foote D, Tan F, et al. Development and validation of a deep
learning algorithm for Gleason grading of prostate cancer from
biopsy specimens. JAMA Oncol 2020;6:1372–80.

[10] Bulten W, Balkenhol M, Belinga J-JA, et al. Artificial intelligence
assistance significantly improves Gleason grading of prostate biop-
sies by pathologists. Mod Pathol 2021;34:660–71.

[11] Steiner DF, Nagpal K, Sayres R, et al. Evaluation of the use of
combined artificial intelligence and pathologist assessment to
review and grade prostate biopsies. JAMA Netw Open 2020;3:
e2023267.

[12] Pantanowitz L, Quiroga-Garza GM, Bien L, et al. An artificial intelli-
gence algorithm for prostate cancer diagnosis in whole slide images
of core needle biopsies: a blinded clinical validation and deploy-
ment study. Lancet Digit Health 2020;2, e407⬜16.

[13] Mun Y, Paik I, Shin S-J, Kwak TY, Chang H. Yet Another Automated
Gleason Grading System (YAAGGS) by weakly supervised deep
learning. NPJ Digit Med 2021;4:99.

[14] Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS.
Adversarial attacks on medical machine learning. Science
2019;363:1287–9.

[15] Grand Challenge. The PANDA challenge. grand-challenge.org,
https://panda.grand-challenge.org/.

[16] Moulin P, Grünberg K, Barale-Thomas E, der Laak JV. IMI-Bigpicture: a
central repository for digital pathology. Toxicol Pathol 2021;49:711–3.

[17] Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA):
maintaining and operating a public information repository. J Digit
Imaging 2013;26:1045–57.

[18] Messoudi S, Rousseau S, Destercke S. Deep conformal prediction for
robust models. Inform Process Manage Uncertainty Knowl Based
Syst 2020;1237:528–40.

[19] Linmans J, Laak J, Litjens G. Efficient out-of-distribution detection in
digital pathology using multi-head convolutional neural networks.
In: Medical imaging with deep learning. PMLR. p. 465⬜78.

[20] Eklund M, Kartasalo K, Olsson H, Ström P. The importance of study
design in the application of artificial intelligence methods in medi-
cine. NPJ Digit Med 2019;2:101.

[21] Nagpal K, Liu Y, Chen P-HC, Stumpe MC, Mermel CH. Reply: ⬜The
importance of study design in the application of artificial intelli-
gence methods in medicine⬢. NPJ Digit Med 2019;2:100.

http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0005
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0005
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0005
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0010
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0010
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0010
http://dx.doi.org/10.1038/s41379-021-00794-x
http://dx.doi.org/10.1038/s41379-021-00794-x
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0020
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0020
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0020
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0020
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0025
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0025
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0025
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0030
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0030
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0030
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0030
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0035
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0035
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0035
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0040
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0040
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0040
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0045
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0045
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0045
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0050
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0050
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0050
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0055
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0055
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0055
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0055
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0060
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0060
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0060
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0060
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0065
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0065
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0065
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0070
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0070
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0070
https://panda.grand-challenge.org/
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0080
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0080
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0085
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0085
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0085
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0090
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0090
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0090
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0100
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0100
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0100
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0105
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0105
http://refhub.elsevier.com/S2405-4569(21)00181-4/sbref0105

	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in BiopsiesCurrent Status and Next Steps
	References


