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Estimatingdiagnostic uncertainty in artificial
intelligence assisted pathology using
conformal prediction

Henrik Olsson 1 , Kimmo Kartasalo 1, Nita Mulliqi1, Marco Capuccini2,
Pekka Ruusuvuori3,4, Hemamali Samaratunga5, Brett Delahunt6,
Cecilia Lindskog 7, Emiel A. M. Janssen8,9, Anders Blilie8,9, ISUP Prostate Ima-
gebase Expert Panel, Lars Egevad10, Ola Spjuth 2 & Martin Eklund 1

Unreliable predictions can occur when an artificial intelligence (AI) system is
presented with data it has not been exposed to during training. We demon-
strate the use of conformal prediction to detect unreliable predictions, using
histopathological diagnosis and grading of prostate biopsies as example. We
digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic
study, used for training, and 3059 biopsies from 676 men used for testing.
With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer
diagnosis (compared to 14 errors [2%]without conformal prediction) while 175
(22%) of the predictions are flagged as unreliable when the AI-system is pre-
sented with new data from the same lab and scanner that it was trained on.
Conformal prediction could with small samples (N = 49 for external scanner,
N = 10 for external lab and scanner, and N = 12 for external lab, scanner and
pathology assessment) detect systematic differences in external data leading
to worse predictive performance. The AI-system with conformal prediction
commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue
compared to 44 (25%)without conformal prediction,while the system flags 143
(80%) unreliable predictions. We conclude that conformal prediction can
increase patient safety of AI-systems.

There are good indications that artificial intelligence (AI)will transform
healthcare and offer improved patient care at a reduced cost1. Radi-
ology andpathology are likely to be thefirstfields inmedicinewhereAI
will be broadly implemented2. A barrier to the implementation of AI
systems in healthcare is the need to ensure accurate AI performance
across different settings3–5. Widespread application of AI systems will

inevitably expose these systems to data beyond the domain upon
which they were trained, either because it is unusual (e.g., atypical
tissue previously unseen for the AI) or because it originates from a
different imaging scanner provider, a different laboratory, or a dif-
ferent patient population. The ability to detect unreliable predictions
will therefore be key to AI implementation in healthcare. Most AI
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systems and prediction models, however, only provide point predic-
tions, without any associated assessment of how reliable a predic-
tion is.

Conformal prediction (CP) is a mathematical framework that can
be used together with any AI system or predictionmodel to guarantee
the error rate is bounded by a pre-specified level6. Using CP, it is
possible to set the desired confidence level, say 95%, in the prediction;
the conformal predictor will then provide a prediction region around
the point prediction that contains the true label with 95% probability
(for classificationproblems, this prediction regioncorresponds to a set
of labels, amultilabel prediction). If the prediction does not reach this
confidence level, an empty prediction can bemade, or, if the prediction
region associatedwith a point prediction is too large for the prediction
to be informative, the corresponding prediction can be flagged for
human intervention. The conformal predictor can thus function as a
quality control system for ensuring that only reliable predictions are
made. See Supplementary Table 1 for a brief introduction to CP.

We and others have shown that AI-assisted pathology is a pro-
mising pathway to meet the challenges associated with histopatholo-
gical diagnosis, for example, applied to the grading of prostate
biopsies according to the International Society ofUrological Pathology
(ISUP) grading scheme7–10. Despite this, questions remain how about
these models can generalize to data that differ from the training data.

In this study, we develop conformal predictors for AI-assisted
prostate pathology. We show how these predictors can be used to
detect unreliable predictions due to changes in tissue preparation

techniques in different laboratories, digitization utilizing different
digital pathology scanners, and the presence of atypical prostatic tis-
sue, such as variants of prostatic adenocarcinoma and benign mimics
of cancer. We believe this approach can have widespread utility in
ensuring patient safety of clinically implemented AI systems.

Results
We applied the CP framework to AI for the diagnosis and grading of
prostate cancer in biopsies using data from the STHLM3 study (Fig. 1
and Supplementary Fig. 1). STHLM3 was a prostate cancer screening
trial in men aged 50–69 years undertaken in Stockholm, Sweden,
during 2012–2015 (ISRCTN84445406)11. For the training of the AI
algorithm and conformal predictor, we included a digitized selection
of 7788 formalin-fixed and hematoxylin and eosin-stained biopsies
from 1192 STHLM3 participants. All slides were digitized using either
Hamamatsu C9600-12 (n = 5124) or Aperio ScanScope AT2 scanners
(n = 2664). Details of the selection and digitization of specimens have
been described previously7. The underlying AI system was trained
using convolutional deep neural networks following Ström et al.7 To
evaluate the CP framework, we assessed efficiency, defined as the
fraction of all predictions resulting in a correct single-label prediction.
We also assessed validity (the error rate), not exceeding the pre-
specified significance level of the conformal predictor, for cancer
detection and ISUP grading.

We employed a collection of six different datasets (numbered 1–6
below) comprising, in total, 3059 digitized biopsies for the evaluation

Fig. 1 | Overview of study design. A The AI system delivers point predictions, with
no assessment of how reliable they are. B Conformal prediction is used to identify
unreliable predictions from AI models. Unreliable predictions from AI systems can
occur for several reasons, for example, because the AI system is presented with
atypical data that it has not seen during training or because there are systematic
differences between training data and data generated within the setting that the AI
system is deployed. C Two datasets were utilized for the evaluation of AI cancer
detection and ISUP grading performance under idealized conditions, where biop-
sies were processed in the same pathology laboratory and digitized using the same
scanners as the biopsies in the training data.D The conformal predictor’s ability to
detect systematic differences between training data and external data was eval-
uated. Identification of such differences would then need to trigger corrective
actions so that patient safety canbe ensured. Twodifferent data sourceswere used.

In Test set 3, a different scanner was used for digitizing histopathology slides of
prostate biopsies compared to the training data. In Test set 4 and Test set 5, both
the pathology laboratory and the digital scanner that was used to prepare the
datasetweredifferent compared to the training data.EWeevaluated the conformal
predictor’s ability to detect unusual prostate tissue that the AImodel had limitedor
no previous exposure to during training. Test set 6 contained a set of 179 biopsies
with atypical prostatic tissue, such as variants of prostatic adenocarcinoma and
benign mimics of cancer. The conformal predictor should be able to flag atypical
cases that are unsuitable for automated diagnosis, and that human intervention
may be needed. ISUP: International Society of Urological Pathology. Imagebase
database: a reference database developed by ISUP to promote the standardization
of reporting urological pathology and containing cases independently reviewed by
23 highly experienced urological pathologists.
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of the AI system and conformal predictor. The baseline characteristics
of biopsy cores from the training data and the six different datasets
used for the evaluation of the AI system and the conformal predictor
are shown in Table 1. All biopsies in both the training and Test set 1–4
and 6 were graded by Professor Lars Egevad (L.E.) according to the
ISUP 2014 guidelines. The test set 2 was also independently graded by
22 additional uropathologists. The test set 5 was graded at the
Department of Pathology, Stavanger University Hospital.

Evaluation of AI performance under idealized conditions
Test set 1: As a baseline, we evaluated the AI system and the conformal
predictor for undertaking cancer detection and ISUP grading on an
independent dataset of 794 biopsies from 123 men from the
STHLM3 study (no biopsies from men in the test set were included in
the training data). This dataset was utilized for testing under idealized
conditions, where biopsies were processed in the same pathology
laboratory and digitized using the same scanners as the biopsies in the
training data. The performance for the discrimination between benign
biopsy cores and cores containing cancer on the baseline test set (Test
set 1) was high; only one cancer case was erroneously classified as
benign by the conformal predictor at a confidence level of 99.9%
(Table 2). The overall efficiency—the percent correct single prediction
out of all predictions—was 78% (72% for benign biopsy cores and 86%
for biopsies with cancer). This means that the conformal predictor
flagged 22%of predictions for human review.No empty set predictions
were made. In contrast, the AI system without CP committed 14 (2%)
errors for cancer detection (Table 2).

Agreement by two-thirds across a panel of experienced uro-
pathologists has previously been defined as a consensus grade12.
Consequently, we evaluated the efficiency of the conformal predictor
at a 67% confidence level for ISUP grading onTest set 1: 98 (28%) errors
were committed by the conformal predictor using the grade assigned
by an experienced uropathologist (L.E.) as the gold standard (Table 2).
There were 10 (3%) empty predictions and 72 (20%) multiple predic-
tions, and the overall efficiency (correct single predictions) was 49%.
For a confidence level of 80%, the error rate and the number of empty
predictions were lower (62 errors [18%] and 7 empty predictions [2%]),
while the number of multiple predictions was higher (n = 153 [43%]).
The AI systemwithout CP committed 117 (33%) errors for ISUP grading
(Table 2). The conformal predictor produced lower class-wise error
rates compared to the AI system without CP for ISUP grades 2–5, but
the conformal predictor produced a higher error rate for ISUP 1 (28%)
compared to the error rate by the AI system (15%). A large number of
ISUP 1 training examples (47% of all cancer cases; Table 1) gives the AI
system a relatively better performance for recognizing this class. This
means that we can allow for higher confidence within these classes

when we apply the conformal predictor without causing unreasonably
wide (and therefore non-informative) prediction intervals. Thus, we
evaluated a mixed confidence approach, where a higher 85% con-
fidence level was used for ISUP 1 and a confidence level of 67% was
used for ISUP grades 2–5. Using this mixed-confidence approach, the
AI system committed 70 (20%) errors (compared to 117 errors [33%]
without CP), and the overall efficiency was 168 (47%) (Table 2).

Conformal predictors output multiple predictions in cases where
they cannot assign reliable single predictions. It is, therefore, not
possible to directly compare the sensitivity and specificity with and
without the use of CP. However, we provide an experimental example,
aiming to describe how a combination of CP coupled with human
assessment couldwork to improve the accuracy of prostate pathology.
In this example, we assume expert uropathologist-level diagnostic
accuracy on the biopsies for which the conformal predictor has been
identified as unreliable. The standalone AI system achieved an AUC of
99.7% for cancer detection, while the experimental approach, com-
bining the point predictions from the AI, with an assessment of the CP
regions, and human assessment of unreliable cases, achieved an AUC
of 99.9% (Supplementary Fig. 5).

Evaluation of AI performance against a panel of uropathologists
The test set 2: We compared the reliability of the AI system’s predic-
tion, as assessed by the conformal predictor, to that of expert uro-
pathologists. We utilized 87 digitized biopsies from the Imagebase
database, developed by ISUP, to promote the standardization of
reporting of urological pathology and containing cases independently
reviewed by 23 highly experienced urological pathologists (the Ima-
gebase panel; Supplement Section S1). Using the mode of the ISUP
grades assigned by the 23 Imagebase uropathologists as the gold
standard, the overall efficiency was 33 and 49% for confidence levels
80 and 67%, respectively (Supplementary Table 2). The prediction
regions covered 65% of the individual votes by the 23 pathologists at a
67% confidence level, and 83% of the panel votes at a confidence level
of 80% (Supplementary Data 1). This means that the uncertainty esti-
mated to be associated with the grades assigned by the AI closely
approximates the uncertainty associated with the grading performed
by different pathologists. The size of the prediction regions for the
multi-label predictions was typically two ISUP grades (Supplementary
Data 1 and Supplementary Table 3).

Detection of systematic differences in external data
To test the conformal predictor’s ability to identify systematic differ-
ences in test data when compared to training data, we used two
datasets: Test set 3 involved theuseof a scanner that differed fromthat
used to prepare the training dataset. By exploiting the fact that

Table 1 | Baseline characteristics of biopsy cores from the training data and the six different test datasets used for evaluation of
the AI system and the conformal predictor

ISUP distribution of biopsies in training and test sets

Cancer grade Training sets Test sets

Deep neural
network train-
ing
set (n = 6951)

Conformal pre-
diction calibra-
tion set (n = 837)

(1) Baseline
test
set (n = 794)

(2) Image-
base (n = 87)

(3) External
scanner
(n = 449)

(4) External scan-
ner and external
pathology labora-
tory (n = 330)

(5) External scan-
ner and external
pathology labora-
tory (n = 1220)

(6) Rare prostate
tissue morphol-
ogy (n = 179)

Benign 3724 (54%) 471 (56%) 440 (55%) 0 (0%) 91 (20%) 108 (33%) 861 (71%) 109 (61%)

ISUP 1 1530 (22%) 176 (21%) 172 (22%) 21 (24%) 183 (41%) 65 (20%) 206 (17%) 51 (28%)

ISUP 2 539 (8%) 80 (10%) 62 (8%) 32 (37%) 64 (14%) 63 (19%) 61 (5%) 19 (11%)

ISUP 3 263 (4%) 35 (4%) 31 (4%) 15 (17%) 33 (7%) 49 (15%) 45 (4%) 0 (0%)

ISUP 4 469 (7%) 51 (6%) 41 (5%) 8 (9%) 47 (10%) 19 (6%) 22 (2%) 0 (0%)

ISUP 5 426 (6%) 24 (3%) 48 (6%) 11 (13%) 31 (7%) 26 (8%) 25 (2%) 0 (0%)

The Imagebasedatasetwas independently gradedby23uropathologists (themode ISUP grade is shown in the table). ISUP: International Society ofUrological Pathology. ISUP 1 (Gleason score3 + 3),
ISUP 2 (Gleason score 3 + 4), ISUP 3 (Gleason score 4 + 3), ISUP 4 (Gleason score 4 + 4, 3 + 5, and 5 + 3), ISUP 5 (Gleason score 4 + 5, 5 + 4, and 5 + 5).
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biopsies from the STHLM3 study were digitized using two different
scanners, we trained the AI system only on Aperio images and eval-
uated this on a set of 449 slides scanned using both scanners, thus
creating a paired dataset where a change in the scanner was the only
variable to impact prediction performance. We then reversed the
experiment and used only Hamamatsu images for training, with sub-
sequent evaluation on the 449 images scanned both using Aperio and
Hamamatsu scanners. Test set 4 included variations in both the
laboratory and slide scanner. This set consisted of 330 slides pro-
cessed and digitized at the Karolinska University Hospital, represent-
ing both a different laboratory and scanner compared to the training
data. Test set 5 consisted of 1220 slides processed and digitized at the
Stavanger University Hospital. These slides were used as an external

validation set to assess the conformal predictor’s ability to detect
systematic differences in test data.

Figure 2 shows the expected to observed cancer detection error
rates at significance levels between 0 and 100% for Test sets 1, 3, 4, and
5. The conformal predictor was well calibrated for Test set 1 (Fig. 2,
Panel A), when the same scanner was used for training and evaluation,
but not for Test set 3 (external scanner; Fig. 2, Panel B and Supple-
mentary Fig. 4), Test set 4 (external scanner and laboratory; Fig. 2,
Panel C), or Test set 5 (the external set; Fig. 2, Panel D)
(Kolmogorov–Smirnov P <0.05 for all tests). The prediction regions
were valid (Kolmogorov–Smirnov P >0.05) when the same scanner
was used for training and evaluation on Test set 3 (Supplementary
Fig. 2). The number of observations needed to detect a systematic

Table 2 | Prediction regions on the baseline cases (Test set 1) for cancer detection and ISUP grading, n (%)

Confidence Benign (n = 440) Cancer
(n = 354)

All biop-
sies (n = 794)

Conformal prediction
regions for cancer detection

99.90% Error, n (%) 0 (0) 1 (0) 1 (0)

Empty, n (%) 0 (0) 0 (0) 0 (0)

Single predic-
tions, n (%)

315 (72%) 303 (86%) 618 (78%)

Multiple predic-
tions, n (%)

125 (28%) 50 (14%) 175 (22%)

Conformal prediction regions for ISUP grading

ISUP 1 (n = 172) ISUP 2 (n = 62) ISUP 3 (n = 31) ISUP 4 (n = 41) ISUP 5 (n = 48) All grades (n = 354)

67% Error, n (%) 49 (28%) 20 (32%) 7 (23%) 11 (27%) 11 (23%) 98 (28%)

Empty, n (%) 5 (3%) 2 (3%) 0 (0%) 2 (5%) 1 (2%) 10 (3%)

Single predic-
tions, n (%)

114 (66%) 20 (32%) 7 (23%) 12 (29%) 21 (44%) 174 (49%)

Multiple predic-
tions, n (%)

4 (2%) 20 (32%) 17 (55%) 16 (39%) 15 (31%) 72 (20%)

80% Error, n (%) 28 (16%) 16 (26%) 6 (19%) 7 (17%) 5 (10%) 62 (18%)

Empty, n (%) 3 (2%) 2 (3%) 0 (0%) 1 (2%) 1 (2%) 7 (2%)

Single predic-
tions, n (%)

97 (56%) 8 (13%) 3 (10%) 6 (15%) 18 (38%) 132 (37%)

Multiple predic-
tions, n (%)

44 (26%) 36 (58%) 22 (71%) 27 (66%) 24 (50%) 153 (43%)

Conformal prediction regions for ISUP grading: Class-wise confidence levels

Class-wise confidence levels Confidence 85%
for ISUP 1

Confidence 67% for ISUP 2—ISUP 5

ISUP 1 (n = 172) ISUP 2 (n = 62) ISUP 3 (n = 31) ISUP 4 (n = 41) ISUP 5 (n = 48) All grades (n = 354)

Error, n (%) 20 (12%) 20 (32%) 7 (23%) 12 (29%) 11 (23%) 70 (20%)

Empty, n (%) 2 (1%) 2 (3%) 0 (0) 1 (2%) 1 (2%) 6 (2%)

Single predic-
tions, n (%)

117 (68%) 11 (18%) 7 (23%) 12 (29%) 21 (44%) 168 (47%)

Multiple predic-
tions, n (%)

33 (19%) 29 (47%) 17 (55%) 16 (39%) 15 (31%) 110 (31%)

AI point predictions for cancer detection

Benign (n = 440) Cancer
(n = 354)

All biop-
sies (n = 794)

Error, n (%) 4 (1%) 10 (3%) 14 (2%)

Correct, n (%) 436 (99%) 344 (97%) 780 (98%)

AI point predictions for ISUP grading

ISUP 1 (n = 172) ISUP 2 (n = 62) ISUP 3 (n = 31) ISUP 4 (n = 41) ISUP 5 (n = 48) All grades (n = 354)

Error, n (%) 26 (15%) 33 (53%) 19 (61%) 21 (51%) 18 (38%) 117 (33%)

Correct, n (%) 146 (85%) 29 (47%) 12 (39%) 20 (49%) 30 (62%) 237 (67%)

The results are presented both as prediction regions by the conformal predictor andpoint predictions by theAI systemwithout the conformal predictor. Cancer detection is reported at a confidence
level of 99.9%, and ISUP grading is reported at 67% and 80% confidence levels, as well as using class-wise confidence levels (85% for ISUP 1 and 67% for ISUP 2–5). Labels are included in the
prediction region if their confidence is higher than a user-specified desired confidence (e.g., 99.9%). The error is the fraction of true labels not included in the prediction region. A multi-label
predictionmeans that the prediction is uncertain, and the model cannot distinguish between several possible class labels at the desired confidence. Empty set predictions are examples where the
model could not assign any label, typically meaning that the example was very different from the data the model was trained on. ISUP International Society of Urological Pathology.
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difference between the training data and Test set 3 was 49 observa-
tions, and the corresponding number for Test set 4 was 10 observa-
tions, and 12 observations for Test set 5 (Supplementary Fig. 2).

Detection of atypical prostate tissue
The test set 6: Lastly, to assess the conformal predictor on unusual
morphological patterns that the underlying AImodel had limited or no
previous exposure to during training, we used a set of 179 biopsies
containing rare prostate tissue morphologies. These tissue sections
contain morphologies that are typically difficult to diagnose or grade
for pathologists, such as benign mimics of prostate cancer and rare
prostate cancer subtypes (adenosis [n = 36], basal cell hyperplasia
[n = 21], clear cell cribriform hyperplasia [n = 3], prostatic atrophy
[n = 37], posatrophic hyperplasia [n = 5], Cowperʼs glands [n = 6], can-
cer of atrophic type [n = 11], foamy gland cancer [n = 13], prostatic

intraepithelial neoplasia (PIN-like) carcinoma [n = 3], pseudohyper-
plastic cancer [n = 41], small-cell cancer [n = 3]). Figure 3 illustrates
example pathology images for a sample of the rare prostate tissue
subtypes from this dataset.

For Test set 6, the conformal predictor flagged 143 predic-
tions (80%) for human intervention (i.e., uncertain multiple pre-
dictions) and committed 3 errors (2%). In contrast, the AI system
without CP, providing diagnosis for all samples, committed 44
errors (25%) (Table 3).

Discussion
The main barrier to the implementation of AI systems in healthcare is
to ensure accurate AI performance across different settings. In this
study, we have used AI for histopathological diagnosis and grading of
prostate cancer to demonstrate how a systembased onCP can be used

Fig. 2 | Calibration plot of the observed prediction error (i.e., the fraction of
true labels not included in the prediction region) on the y-axis and the pre-
specified significance level ε i.e., the tolerated error rate. The conformal pre-
dictor is valid if the observed error rate does not exceed ε i.e., the observed error
rate should be close to the diagonal line, the tolerated error rate for all significance
levels. The main advantage of conformal predictors is that they provide valid
predictions when new examples are independent and identically distributed to the
training examples. The graphs show results for Test set 1, 3, and 4, respectively.
Panel A shows prediction regions on Test set 1, an independent test set consisting
of 794 biopsies from 123men from the STHLM3 study, all from the same laboratory
as well as scanned on the same scanners as the training data. Panel B shows pre-
diction regions on Test set 3 (external scanner), a set of 449 slides, held out from
training, that was scanned on a different scanner than the training data. To evaluate
Test set 3 (external scanner), we excluded images scanned on Hamamatsu from

training, leaving 2152 Aperio images for training. The prediction regions were non-
valid when evaluated on the new scanner (Hamamatsu), as the prediction error is
larger than the tolerated error for all significance levels. Panel C shows prediction
regions on Test set 4, a set of 330 slides from an external clinical workflow, these
slides were processed using a different laboratory and a different scanner com-
pared to the training data. Panel D shows prediction regions on Test set 5, an
external test set of 1220 slides from Stavanger University Hospital representing an
external clinical workflow; these slides were processed using a different laboratory
and a different scanner compared to the training data and used as prospective
validation of the conformal predictor. We used the Kolmogorov–Smirnov test of
equality of the distribution of the predictions in the calibration set and each test
dataset to test the validity of the prediction regions. The null hypothesis was that
the samples were drawn from the same distribution. A p-value of less than 5% was
considered statistically significant (two-sided).
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tomonitor predictions fromAI systems and flag unreliable predictions
for human intervention, as well as to identify systematic differences
between the training data and external data leading to poor model
performance.

Errors in prostate cancer diagnosis are rare but well
recognized13,14. It is clear that there is less acceptance of machine
learning mistakes than of human mistakes15. CP enables us to only
accept predictions with high confidence, such that the error rate can
be kept low. The tradeoff is that the conformal predictor can output
empty or multiple predictions, which identifies cases where the con-
formal predictor cannot assign reliable predictions. In a scenario
where a physician is assisted by an AI system, this provides important
feedback to the physician so as to not rely on the AI system’s predic-
tions for these cases. In a scenario where the AI system would operate
independently, such unreliable cases can be flagged for human
inspection. Such a process enables synergisms between AI and
humans, where the AI systemmay identify the clear-cut cases where its
predictions are highly reliable, while expert pathologists have more
time to focus on the challenging unreliable predictions (Table 2 and
Supplementary Fig. 5). It is; however, important that the number of
unreliable predictions does not become too high as this could lead to
an unmanageable situation. In our results, we show that the unreliable
(empty or multiple) predictions for prostate cancer detection were
22% at a confidence level of 99.9%. This represents an error rate of
0.1%, which is markedly lower than the 2% error rate that has been
reported for pathologists13,14. Our results on Test set 6, containing
unusual morphological patterns, demonstrate how CP can identify
cases that the underlying AI system had little or no exposure to during
training. Using CP, the errors could be decreased from 44 (25%) to 3
(2%) at the cost offlagging 143predictions (80%) for human inspection.

The Gleason grading system suffers from a high level of inter-
observer variability,making grading a challenging task forAI systems16.
For example, using CP at a confidence level of 67% (representing the
level of the agreement defined by the Imagebase panel to constitute
consensus12), generated 49% single predictions and 20% multiple

Fig. 3 | Example pathology images of rare prostate tissue subtypes. Panel A Be-
nign prostatic tissue with postatrophic hyperplasia. Panel B Benign prostatic tissue
with partial atrophy. Panel C Pseudohyperplastic cancer. Panel D Small cell carci-
noma of the prostate. The case in Panel B was misinterpreted by AI as malignant,
while the other cases were correctly classified as benign and malignant, respec-
tively. Scale bars correspond to 500 µm.
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predictions. Rather than relying on a single assigned ISUP grade by a
pathologist, we argue that the multiple predictions better reflect the
true uncertainty in the grade assignment. This is further supported by
the fact that prediction regions covered 65 and 83% (at 67 and 80%
confidence levels, respectively) of the individual votes by the 23
pathologists on the Imagebase reference panel. These prediction
regions had a median size of two ISUP grades, making them able to
provide informative support for clinical decision-making.

CP relies on the assumption that the training data and the external
data are received in random order from the same distribution. While
this is often a reasonable assumption locally (e.g., patients fromagiven
hospital’s uptake area seeking care in random order), it is less likely to
be true across different healthcare settings, where differences would
be expected across patient populations, laboratories, and scanners.
The validity property of CP enables it to identify if such systematic
differences between training and external data lead to deteriorated AI
performance, and warn that re-calibration of the underlying AI system
is required to ensure the accuracy of predictions. In our results, 49
observations were required to identify that data from a new scanner
resulted in worse performance, 10 observations were required when
the data originated from an external lab and a new scanner, and 12
observations were required on the external set, using a 5% alpha level
Kolmogorov–Smirnov test. More refined tests may lead to further
improved test characteristics17.

The problem of how quantifying the uncertainty of deep learning
models has been addressed using different techniques, such as cou-
pling deep learning models with Bayesian inference, Monte-Carlo
dropout, or deep ensembles18–20. These methods are, however, ham-
pered by additional computational costs and modeling complexity. In
contrast, CP is lightweight to implement as part of any learning algo-
rithm. Further, it is based on a well-defined mathematical framework
that guarantees valid predictions (in fact, conformal predictors are
essentially the only way to achieve valid prediction regions6), and the
confidence levels can be varied to reflect the clinical cost of making an
erroneous prediction.

The strengths of our study include the use of unique data sources
that enabled us to study unusual morphologies, as well as systematic
differences introduced by the use of different scanners and labora-
tories. All biopsies were graded by the same experienced pathologist
(L.E.), thus avoiding total confounding between the pathologist and
external data from a new laboratory. This reduced the likelihood that
systematic differences could be introduced into the data due to vari-
able interpretations by different pathologists. A further strength is the
use of Imagebase data (Test set 2) for the evaluation of performance
against a panel of expert uropathologists.

A limitation of the study is that we have not performed pro-
spective validation. Additionally, we have utilized a simple conformal
predictor (Methods Section: CP). It is likely that more advanced con-
formal predictors would achieve smaller prediction regions and higher
proportions of reliable predictions. In this study, we have investigated
prostate pathology as an example of how CP can be used for quality
assurance of medical AI systems. Naturally, the same issues arise in all
applications of AI, and conformal predicting will likely have utility for
most other applications to ensure patient safety as we move toward
the clinical implementation of AI systems.

Methods
Conformal prediction
CP is a mathematical framework for making predictions at exact levels
of confidence, basedonpast experiences andpreviously seendata (see
Supplementary Table 1 for a brief introduction toCP). The output from
a conformal predictor is a prediction region, i.e., a set of class labels (for
classification problems) or an interval (for regression). This contrasts
with the single-value prediction from regular prediction models. For
example, for a binary classification problem, the possible prediction

sets are {0}, {1}, {0, 1}, or the empty set. Labels are included in the
prediction region if their confidence is higher than a user-specified
desired confidence level (e.g., 95%). A smaller prediction region is
more efficient (more informative). Preferably, we would like the pre-
diction region to only contain a single predicted label. A multi-label
prediction means that the prediction is uncertain, and the model
cannot distinguish between several possible class labels at the desired
confidence level. For example, neither the assignment of a biopsy core
as benign nor as containing cancer can be made at the desired con-
fidence level, meaning that the conformal predictor will output a
prediction set containing both classes. Although such a prediction is
not incorrect per se, it is inconclusive, and human intervention would
be needed. Empty set predictions are exampleswhere themodel could
not assign any label, typically meaning that the example was very dif-
ferent from the data the model was trained on. Higher desired con-
fidence in the prediction leads to larger prediction regions
(analogously to how higher desired confidence in parameter estimates
lead to larger confidence intervals).

The main advantage of conformal predictors is that they are
mathematically guaranteed to provide valid predictions when new
examples are independent and identically distributed to the training
examples. This means that the probability that the prediction region
determined by the conformal predictor does not include the true label
is mathematically guaranteed to be less than or equal to a user-set
significance level (a proportion of acceptable errors)6. The validity
property of CP enables it to diagnose systematic differences between
training data and external data or drifts in the data over time, and
signal that re-calibration of the underlying machine learning model is
needed to guarantee valid predictions.

Conformal predictors are built on top of the underlying predic-
tion algorithm, and the framework can therefore be applied to all
prediction algorithms21. The idea of CP is that for every new example,
we try every possible class label, and evaluate howeach candidate class
label conforms with the training examples. The intuition behind CP is
that data less conforming with training data should lead to less certain
predictions. The concept of conformity is captured by a nonconformity
score. For classification tasks, a commonly used nonconformity score
is one minus the predicted probability. However, more advanced
nonconformity scores arepossible, e.g., by including information from
the distribution of predictor variables to define the nonconformity
measure. When making a prediction using the conformal predictor,
the nonconformity score is used to calculate a p-value for each pos-
sible class label by computing the proportion of observations (pairs of
predictor vectors and assigned class label) with more extreme non-
conformity scores. Assigned labels are included in the prediction
region if the p-value is larger than 1-c, where c is the desired confidence
(e.g., 95%) in the prediction.

CP was originally defined as an online transductive framework6,22.
In the online transductive mode, all available data is used to calculate
the conformity score for each new example to make predictions on,
which makes it necessary to retrain the underlying machine learning
model for every calibration example, as well as for every test example.
While the transductive online framework is attractive in the sense that
it uses all available data for every new prediction, it is often compu-
tationally prohibitive. In addition, many applications (in particular in
medicine) are not amenable to an online setting. Instead, a fixedmodel
is used, and updates to the model are introduced with relatively long
intervals in an inductive offline framework. CP has therefore been
extended to the inductive setting21, where one model is built from a
training set and then applied to a test set. Inductive CP is computa-
tionallymore efficient than the transductive conformal predictors. For
inductive conformal predictors, the training dataset has to be divided
into a proper training set (for training the underlyingmachine learning
model) and a calibration set, where the calibration set is used for
tuning the conformal predictor.
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The most basic implementation of conformal predictors guaran-
tees the error rate on a population level (across all examples in a
dataset). This means that the error rate can conceivably be lower
within one subpopulation of the dataset andhigherwithin another. For
example, the error rate could be lower for one class label and higher
for the other.Mondrian CP was developed to achieve the pre-defined
error rate within the substrata of the population23. The idea is simple:
Insteadof applying theCP framework across the entirepopulation, it is
instead tuned within each substratum, which mathematically guaran-
tees the desired error rate within each stratum.

For further reading about CP, see Alvarsson et al., which describes
CP in a comprehensive but non-technical way when used in drug dis-
covery applications24. See also one related publication by Wieslander
et al., where CP is combined with deep learning for region segmenta-
tion of whole slide lung tissue, to assess the confidence of the seg-
mented regions25.

Application of CP to AI for prostate pathology
We applied the CP framework to AI for the diagnosis and grading of
prostate cancer in biopsies (Fig. 2 and Supplementary Fig. 1). The
underlying AI system was trained using two ensembles of convolutional
deep neural networks (DNN) following Ström et al.7 The first ensemble
performed binary classification of image patches into benign or malig-
nant, while the second ensemble classified patches into Gleason pat-
terns 3–5. Each ensemble consisted of 30 Inception V3 models
pretrained on ImageNet26,27. The predicted probabilities for the Gleason
pattern at each location of the biopsy core were aggregated into slide-
level features. The aggregated slide-level features were used as pre-
dictors for training a gradient-boosted trees classifier to predict the
presence of cancer and ISUP grade28. See Ström et al for amore detailed
description of the training of the AI system. DNNs were implemented in
Python (version 3.6.9) using TensorFlow (version 2.6.2), and Python
interface for XGBoost (version 1.2.1). Conformal predictors can be
constructed in different ways. Here, we implemented a Mondrian
inductive conformal predictor on a class basis to guarantee the desired
error rate within each class. For the inductive conformal predictor, we
split the training data into a 90% proper training set and a 10% cali-
bration set. The training set was used to train the AI system, whereas the
calibration set was used for the construction of the conformal predictor
p-values. We used the predicted probability of an example belonging to
a given class as a nonconformity measure.

For the training of the AI algorithm and conformal predictor,
we included a digitized selection of 7788 formalin-fixed and
hematoxylin and eosin-stained biopsies from 1192 participants from
the STHLM3 prostate cancer screening trial (ISRCTN84445406)11.
These data were split into a proper training set of 6951 biopsies
from 1069men, a calibration set consisting of 837 biopsies from 123
men, and a test set of 794 biopsies from 123 men (Table 1, Supple-
mentary Fig. 1). Furthermore, we included 3059 biopsies from 676
men used for testing.

The present studywas approved by the Stockholm regional ethics
committee (permits 2012/572-31/1, 2012/438-31/3, and 2018/845-32),
the Regional Committee for Medical and Health Research Ethics (REC)
in Western Norway (permits REC/Vest 80924, REK 2017/71). Informed
consent was provided by the participants in the Swedish dataset. For
the other datasets, informed consent was waived due to the usage of
de-identified prostate specimens in a retrospective setting.

Statistical analysis
We applied the CP framework to AI for the diagnosis and grading of
prostate cancer in biopsies (Fig. 1 and Supplementary Fig. 1). The
underlying AI system was trained using convolutional deep neural
networks (DNN) following Ström et al.7 Briefly, the AI system outputs
probabilities of biopsy cores containing only benign tissue and con-
taining cancer with a specific ISUP grade. We trained two types of

models:Model type 1. In the firstmodel, we used the entire training set
of 7788 biopsies, where 6951 were used for training the DNN and 837
for calibrating the conformal predictor. This model was used on Test
sets 1–2 and 4–5. Model type 2. To evaluate Test set 3 (external scan-
ners), we first excluded images scanned on Hamamatsu from training,
leaving 2152 images scanned on Aperio for training, and 449 images
scanned on Hamamatsu for testing. We then reversed the experiment
and used the 4078 images scanned on Hamamatsu for training, and
449 images scanned on Aperio for testing.

To evaluate the CP framework under idealized conditions, we
assessed efficiency, defined as the fraction of all predictions resulting
in a correct single-label prediction. We also assessed validity (the error
rate), not exceeding the prespecified significance level of the con-
formal predictor, for cancer detection and ISUP grading on the base-
line cases and Imagebase datasets (Test set 1 and 2). For cancer
detection, we report classification efficiency at a confidence
level of 99.9%.

The Imagebase panel defined a consensus grade as an agreement
by two-thirds of the panel members. As a consequence of this, we
evaluated the efficiency of the conformal predictor at a 67% con-
fidence level for ISUP grading. We also evaluated ISUP grading at an
80% confidence level and at class-specific confidence levels (85% for
ISUP 1 and 67% for ISUP 2–5). This means that there is a greater cer-
tainty that the true label of a predicted case will be within the pre-
diction region determined by the CP, but alsomeans that there will be
larger and potentially clinically less informative regions (that is, a lar-
ger proportion of the biopsies flagged as requiring human interven-
tion). To compare the output from the conformal predictor with ISUP
grades assigned by expert uropathologists in the Imagebase panel, we
calculated the proportion of individual pathologist votes that were
covered by the prediction regions (Test set 2).

To investigate the use of CP to detect systematic differences
between the training and test data, we employed the validity property
of CP. For test sets 1, 3, 4, and 5 (corresponding to the baseline test set
[Test set 1], external scanner [Test set 3], and external laboratory and
scanner [Test sets 4 and 5]), we plotted the error rate of the conformal
predictor at all significance levels between 0 and 100%. If the under-
lying AI system is well-calibrated to perform predictions on the test
data, this plot forms a straight line along the diagonal. We tested the
validity of the prediction regions using the Kolmogorov-Smirnov test
of equality for the distribution of the predictions in the calibration set
and each test dataset. Further, we determined howmany observations
would be needed for the detection of systematic differences between
the training and external test data. This was undertaken by estimating
the power of the Kolmogorov–Smirnov test for datasets 1, 3, and 4 by
repeated random sampling of sets of the increasing sizes of predic-
tions from the validation datasets. A p-value of less than 5% was con-
sidered statistically significant (two-sided). No participants were
excluded from the analyses; there was no missing data for the statis-
tical analyses. No formal sample size calculation was performed.
Methods and results are presented in line with the transparent
reporting of a multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) statement29.

R version 4.0.0 was used for the implementation of the conformal
predictors and all statistical analyses (R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data underlying this article cannot be shared publicly for the priv-
acy of individuals that participated in the STHLM3 diagnostic study.
They can be made available through contact with M.E. under research
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collaboration and data-sharing agreements. Source data are provided
in this paper. Anonymized demo versions of the datasets that are used
for the main analyses in the manuscript are available at https://github.
com/heolss/Conformal_analyses, and in the Zenodo database, at
https://doi.org/10.5281/zenodo.7147740. All other data is available in
the Source Data and Supplementary Information files. Anonymized
training data are available as part of the PANDA challenge (https://
www.kaggle.com/c/prostate-cancer-grade-assessment and Bulten
et al. NatureMedicine, 202210). Source data are provided in this paper.

Code availability
The conformal prediction was implemented in R (version 4.0.0). The
code for the analysis is available at https://github.com/heolss/Conformal_
analyses, and in the Zenodo database at https://doi.org/10.5281/zenodo.
7147740. The codeused for training theunderlyingdeep learningmodels
cannot be shared due to patient privacy concerns and due to ongoing
collaborations with the industry to implement the code for clinical
diagnostic use. The code for data processing, model training, and pre-
diction of the underlying deep learning models was implemented using
the details described in our publication by Ström et al. Lancet Oncology,
20207. See the methods section “Application of conformal prediction to
AI for prostate pathology” for a brief overview of how the code was
applied to the datasets presented in the manuscript, and see Ström et al
for a more detailed description of the training of the AI system. The
major components of our work are available in open-source repositories.
Deep learning networks were implemented in Python (version 3.6.9),
using the Keras API of Tensorflow (version 2.6.2) (https://www.
tensorflow.org); Tensorflow Object Detection API (https://github.com/
tensorflow/models/tree/master/research/object_detection), and Python
interface for XGBoost (version 1.2.1). The code used for training the
underlying deep learningmodels can bemade available through contact
with ME under research collaboration and data-sharing agreements. The
PANDA challenge (Bulten et al. Nature Medicine, 202210) website also
contains tutorials for how to start working with the data (https://www.
kaggle.com/code/wouterbulten/getting-started-with-the-panda-dataset)
as well as the code used by the competing teams (https://www.kaggle.
com/competitions/prostate-cancer-grade-assessment/code).
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