354 research outputs found

    Interferon type 1 responses in primary and secondary infections

    Get PDF
    The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes

    SARS-CoV-2 vaccines: Inactivation by gamma irradiation for T and B cell immunity

    Get PDF
    Despite accumulating preclinical data demonstrating a crucial role of cytotoxic T cell immunity during viral infections, ongoing efforts on developing COVID-19 vaccines are mostly focused on antibodies. In this commentary article, we discuss potential benefits of cytotoxic T cells in providing long-term protection against COVID-19. Further, we propose that gamma-ray irradiation, which is a previously tested inactivation method, may be utilized to prepare an experimental COVID-19 vaccine that can provide balanced immunity involving both B and T cells

    Residual active granzyme B in cathepsin C–null lymphocytes is sufficient for perforin-dependent target cell apoptosis

    Get PDF
    Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C–null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8+ cytotoxic T lymphocyte (CTL) raised in cathepsin C–null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C–null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency

    The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation

    Get PDF
    The granule exocytosis pathway of cytotoxic lymphocytes (Tc and NK cells) is critical for control of tumor development and viral infections. Granule-associated perforin and granzymes are key components in Tc cell-mediated function(s). On the basis of studies that showed granzymes A, B, C, K and M, to induce apoptosis in vitro, all granzymes were thought to also induce cell death in vivo. This review summarizes our present understanding of the biological processes elicited by purified granzyme A and granzyme as well as the processes induced by the more physiologically relevant cytotoxic cells secreting these proteases. The combined evidence supports the concept that the granule secretion pathway is not mono-specific but rather poly-functional including induction of pro-inflammatory cytokines, besides their widely appreciated apoptotic properties

    Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages.

    No full text
    Malaria sporozoites induce swift activation of antigen-specific CD8(+) T cells that inhibit the intracellular development of liver-stage parasites. The length of time of functional in vivo antigen presentation, estimated by monitoring the activation of antigen-specific CD8(+) T cells, is of short duration, with maximum T cell activation occurring within the first 8 h after immunization and lasting approximately 48 h. Although the magnitude of the CD8(+) T cell response closely correlates with the number of parasites used for immunization, increasing the time of antigen presentation by daily immunizations does not enhance the magnitude of this response. Thus, once a primary clonal burst is established, the CD8(+) T cell response becomes refractory or unresponsive to further antigenic stimulation. These findings strongly suggest that the most efficient strategy for the induction of primary CD8(+) T cell responses is the delivery of a maximal amount of antigen in a single dose, thereby ensuring a clonal burst that involves the largest number of precursors to become memory cells

    Role of laeA in the regulation of alb1, gliP , Conidial Morphology and Virulence in Aspergillus fumigatus

    Get PDF
    The alb1 (pksP) gene has been reported as a virulence factor controlling the pigmentation and morphology of conidia in Aspergillus fumigatus. A recent report suggested that laeA regulates alb1 expression and conidial morphology but not pigmentation in the A. fumigatus strain AF293. laeA has also been reported to regulate the synthesis of secondary metabolites, such as gliotoxin. We compared the role of laeA in the regulation of conidial morphology and the expression of alb1 and gliP in strains B-5233 and AF293, which differ in colony morphology and nutritional requirements. Deletion of laeA did not affect conidial morphology or pigmentation in these strains, suggesting that laeA is not involved in alb1 regulation during conidial morphogenesis. Deletion of laeA, however, caused down-regulation of alb1 during mycelial growth in a liquid medium. Transcription of gliP, involved in the synthesis of gliotoxin, was drastically reduced in B-5233laeAΔ, and the gliotoxin level found in the culture filtrates was 20% of wild-type concentrations. While up-regulation of gliP in AF293 was comparable to that in B-5233, the relative mRNA level in AF293laeAΔ was about fourfold lower than that in B-5233laeAΔ. Strain B-5233lae4Δ caused slower onset of fatal infection in mice relative to that with B-5233. Histopathology of sections from lungs of infected mice corroborated the survival data. Culture filtrates from B-5233laeAΔ caused reduced death in thymoma cells and were less inhibitory to a respiratory burst of neutrophils than culture filtrates from B-5233. Our results suggest that while laeA is not involved in the regulation of alb1 function in conidial morphology, it regulates the synthesis of gliotoxin and the virulence of A. fumigatus

    Caspase-Dependent Inhibition of Mousepox Replication by gzmB

    Get PDF
    BACKGROUND: Ectromelia virus is a natural mouse pathogen, causing mousepox. The cytotoxic T (Tc) cell granule serine-protease, granzyme B, is important for its control, but the underlying mechanism is unknown. Using ex vivo virus immune Tc cells, we have previously shown that granzyme B is able to activate several independent pro-apoptotic pathways, including those mediated by Bid/Bak/Bax and caspases-3/-7, in target cells pulsed with Tc cell determinants. METHODS AND FINDINGS: Here we analysed the physiological relevance of those pro-apoptotic pathways in ectromelia infection, by incubating ectromelia-immune ex vivo Tc cells from granzyme A deficient (GzmB(+) Tc cells) or granzyme A and granzyme B deficient (GzmAxB(-/-) Tc cell) mice with ectromelia-infected target cells. We found that gzmB-induced apoptosis was totally blocked in ectromelia infected or peptide pulsed cells lacking caspases-3/-7. However ectromelia inhibited only partially apoptosis in cells deficient for Bid/Bak/Bax and not at all when both pathways were operative suggesting that the virus is able to interfere with apoptosis induced by gzmB in case not all pathways are activated. Importantly, inhibition of viral replication in vitro, as seen with wild type cells, was not affected by the lack of Bid/Bak/Bax but was significantly reduced in caspase-3/-7-deficient cells. Both caspase dependent processes were strictly dependent on gzmB, since Tc cells, lacking both gzms, neither induced apoptosis nor reduced viral titers. SIGNIFICANCE: Out findings present the first evidence on the biological importance of the independent gzmB-inducible pro-apoptotic pathways in a physiological relevant virus infection model

    Developmental Regulation of Lck Targeting to the CD8 Coreceptor Controls Signaling in Naive and Memory T Cells

    Get PDF
    The question of whether enhanced memory T cell responses are simply due to an increased frequency of specific cells or also to an improved response at the single cell level is widely debated. In this study, we analyzed T cell receptor (TCR) transgenic memory T cells and bona fide memory T cells isolated from virally infected normal mice using the tetramer technology. We found that memory T cells are qualitatively different from naive T cells due to a developmentally regulated rearrangement of the topology of the signaling machinery. In naive cytotoxic T cells, only a few CD8 molecules are associated with Lck and the kinase is homogeneously distributed inside the cell. However, in vivo priming of naive T cells induces the targeting of Lck to the CD8 coreceptor in the cell membrane and the consequent organization of a more efficient TCR signaling machinery in effector and memory cells
    • …
    corecore