22 research outputs found

    Mitochondria-Targeting Polyprodrugs to Overcome the Drug Resistance of Cancer Cells by Self-Amplified Oxidation-Triggered Drug Release

    No full text
    The multi-drug resistance (MDR) of cancers is one of the main barriers for the success of diverse chemotherapeutic methods and is responsible for most cancer deaths. Developing efficient approaches to overcome MDR is still highly desirable for efficient chemotherapy of cancers. The delivery of targeted anticancer drugs that can interact with mitochondrial DNA is recognized as an effective strategy to reverse the MDR of cancers due to the relatively weak DNA-repairing capability in the mitochondria. Herein, we report on a polyprodrug that can sequentially target cancer cells and mitochondria using folic acid (FA) and tetraphenylphosphonium (TPP) targeting moieties, respectively. They were conjugated to the terminal groups of the amphiphilic block copolymer prodrugs composed of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) and copolymerized monomers containing cinnamaldehyde (CNM) and doxorubicin (DOX). After self-assembly into micelles with the suitable size (∼30 nm), which were termed as TF@CNM + DOX, and upon intravenous administration, the micelles can accumulate in tumor tissues. After FA-mediated endocytosis, the endosomal acidity (∼pH 5) can trigger the release of CNM from TF@CNM + DOX micelles, followed by enhanced accumulation into the mitochondria via the TPP target. This promotes the overproduction of reactive oxygen species (ROS), which can subsequently enhance the intracellular oxidative stress and trigger ROS-responsive release of DOX into the mitochondria. TF@CNM + DOX shows great potential to inhibit the growth of DOX-resistant MCF-7 ADR tumors without observable side effects. Therefore, the tumor and mitochondria dual-targeting polyprodrug design represents an ideal strategy to treat MDR tumors through improvement of the intracellular oxidative level and ROS-responsive drug release

    Matrix Metalloproteinase-Responsive Multifunctional Peptide-Linked Amphiphilic Block Copolymers for Intelligent Systemic Anticancer Drug Delivery

    No full text
    The amphiphilic block copolymer anticancer drug nanocarriers clinically used or in the progress of clinical trials frequently suffer from modest final therapeutic efficacy due to a lack of intelligent features. For example, the biodegradable amphiphilic block copolymer, poly­(ethylene glycol)-<i>b</i>-poly­(d,l-lactide) (PEG–PDLLA) has been approved for clinical applications as a paclitaxel (PTX) nanocarrier (Genexol–PM) due to the optimized pharmacokinetics and biodistribution; however, a lack of intelligent features limits the intracellular delivery in tumor tissue. To endow the mediocre polymer with smart properties via a safe and facile method, we introduced a matrix metalloproteinase (MMP)-responsive peptide GPLGVRGDG into the block copolymer via efficient click chemistry and ring-opening polymerization to prepare PEG–<i>GPLGVRGDG</i>–PDLLA (<b>P1</b>). <b>P1</b> was further self-assembled into micellar nanoparticles (NPs) to load PTX, which show MMP-2-triggered dePEGylation due to cleavage of the peptide linkage. Moreover, the residual VRGDG sequences are retained on the surface of the NPs after dePEGylation, which can serve as ligands to facilitate the cellular uptake. The cytotoxicity of PTX loaded in <b>P1</b> NPs against 4T1 cells is significantly enhanced as compared with free PTX or PTX-loaded PEG–<i>GPLGVRG</i>–PDLLA (<b>P2</b>) and PEG–PDLLA (<b>P3</b>) NPs. In vivo studies confirmed that PTX-loaded <b>P1</b> NPs show prolonged blood circulation, which are similar to <b>P2</b> and <b>P3</b> NPs but exhibit more-efficient accumulation in the tumor site. Ultimately, PTX-loaded <b>P1</b> NPs display statistically significant improvement of antitumor activity against tumor-bearing mice via systemic administration. Therefore, the strategy by facile incorporation of a responsive peptide linkage between PEG and PDLLA is a promising approach to improving the therapeutic efficacy of anticancer-drug-loaded amphiphilic block copolymer micelles

    Thiolactone Chemistry-Based Combinatorial Methodology to Construct Multifunctional Polymers for Efficacious Gene Delivery

    No full text
    Hydrophobic segments and amino moieties in polymeric nonviral gene vectors play important roles in overcoming a cascade of barriers for efficient gene delivery. However, it remains a great challenge to facilely construct well-defined multifunctional polymers through optimization of the amino and hydrophobic groups. Herein, we choose thiolactone chemistry to perform the ring opening reaction of varying hydrophobic groups-modified thiolactones by various amines to generate mercapto groups for further Michael addition reaction with poly­[2-(acryloyloxy)­ethyl methacrylate] (PAOEMA). Based on the combinatorial methodology, a series of multifunctional polymers were prepared and screened. The polymer (P3D) from tetraethylenepentamine and heptafluorobutyric acid-functionalized thiolactone is the most efficacious one with significantly higher gene transfection efficiency and lower cytotoxicity compared with polyethylenimine (PEI) (branched average <i>M</i><sub>w</sub> ∼ 25 000 Da) and Lipofectamine 2000. Cellular uptake and intracellular distribution studies indicate that P3D complexes show high-efficiency endocytosis and excellent endosomal escape. Accordingly, thiolactone chemistry-based combinatorial methodology allows for facile integration of multifunctional groups to prepare simultaneous efficacious and low-cytotoxic gene delivery vectors

    Precise Ratiometric Control of Dual Drugs through a Single Macromolecule for Combination Therapy

    No full text
    A major challenge of combinatorial therapy is the unification of the pharmacokinetics and cellular uptake of various drug molecules with precise control of the dosage thereby maximizing the combined effects. To realize ratiometric delivery and synchronized release of different drugs from a single carrier, a novel approach was designed in this study to load dual drugs onto the macromolecular carrier with different molar ratio by covalently preconjugating dual drugs through peptide linkers to form drug conjugates. In contrast to loading individual types of drugs separately, these drug conjugates enable the loading of dual drugs onto the same carrier in a precisely controllable manner to reverse multidrug resistance (MDR) of human hepatoma (HepG2) cells. As a proof of concept, the synthesis and characterization of xyloglucan–mitomycin C/doxorubicin (XG–MMC/DOX) conjugates were demonstrated. This approach enabled MMC and DOX to be conjugated to the same polymeric carrier with precise control of drug dosage. The cytotoxicity and combinatorial effects were significantly improved compared to the cocktail mixtures of XG–MMC and XG–DOX as well as the individual conjugate of the mixture. Moreover, the results also showed that there was an optimum ratio of dual drugs showing the best cytotoxicity effect and greatest synergy among other tested polymeric conjugate formulations
    corecore