57 research outputs found

    Unsupervised texture image segmentation by improved neural network ART2

    Get PDF
    We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera

    Rosetta Philae SD2 Drill System and Its Operation on 67p/Churyumov-Gerasimenko

    Get PDF
    Rosetta Lander Philae approached and landed on the surface of comet 67P/Churyumov-Gerasimenko on the 12th of November 2014. Among the specific Subsystems and instruments carried on board, the Drill, Sample and Distribution System (SD2) which was in charge to drill the surface of the comet, take comet’s soil sample(s) and distribute the collected sample to different instruments. Rosetta has been launched in 2004 and, after very complex orbital trajectories and specific commissioning events, met and carried out a rendezvous with the comet; after ten years cruise and three subsequent touch down, Philae eventually landed on the comet surface. On the 14th of November 2014 SD2 was decided to be operated on the comet. This paper provides an overview of the achievements during the operational phase on the comet and will summarize the basic characteristics and peculiarities of SD2 drill system

    Calibration activities on the BepiColombo High-Resolution Channel (HRIC) of SIMBIO-SYS instrument

    Get PDF
    HRIC (High Resolution Imaging Channel) is the high resolution channel of the SIMBIO-SYS instrument on- board the ESA BepiColombo Mission. Calibration activities were performed at SelexES premises in spring- summer 2014 in order to check for Channel performances (radiometric performances, quality image and geometrical performances) and to obtain data necessary to setup a calibration pipeline necessary to process the raw images acquired by the channel when in operative scenario

    The measurement of the noise-equivalent spectral radiance of SIMBIO-SYS/VIHI spectrometer

    Get PDF
    We report about the measurement of the Noise- Equivalent Spectral Radiance (NESR) of the VIHI imaging spectromter aboard ESA's Bepi Colombo mission to Mercury. The knowledge of the NESR allows to determine the capability of an optical detector to measure faint signals. A description of the setup used to determine the NESR during the prelaunch calibration campaign is given. The processing of the data col- lected at various operative temperatures and integration times is described. The sensitivity study of the NESR has been performed at the expected detector's temperatures and integration times with the goal to determine the minimum spectral radiance at which VIHI is sensitive during the different observation phases of the mission. A simulation of the expected Signal-to-Noise Ratio (SNR) of VIHI during the different orbital phases is provided

    Radiometric calibration of the SIMBIO-SYS STereo imaging Channel

    Get PDF
    The STereo imaging Channel (STC) is a double wide-angle camera developed to be one of the channels of the SIMBIOSYS instrument onboard of the ESA BepiColombo mission to Mercury. STC main goal is to map in 3D the whole Mercury surface. The geometric and radiometric responses of the STC Proto Flight model have been characterized on-ground during the calibration campaign. The derived responses will be used to calibrate the STC images that will be acquired in flight. The aim is to determine the functions linking the detected signal in digital number to the radiance of the target surface in physical units. The result of the radiometric calibration consists in the determination of well-defined quantities: (1) the dark current as a function of the integration time and of the detector temperature, settled and controlled to be stable at 268 K; (2) the read out noise, which is associated with the noise signal of the read-out electronic; and (3) the fixed pattern noise, which is generated by the different response of each pixel. Once these quantities are known, the photon response and the photoresponse non-uniformity, which represents the variation of the photon responsivity of a pixel in an array, can be derived. The final result of the radiometric calibration is the relation between the radiance of an accurately known and uniform source, and the digital numbers measured by the detector

    The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Get PDF
    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe
    • 

    corecore