464 research outputs found

    Closed-Time Path Integral Formalism and Medium Effects of Non-Equilibrium QCD Matter

    Get PDF
    We apply the closed-time path integral formalism to study the medium effects of non-equilibrium gluon matter. We derive the medium modified resummed gluon propagator to the one loop level in non-equilibrium in the covariant gauge. The gluon propagator we derive can be used to remove the infrared divergences in the secondary parton collisions to study thermalization of minijet parton plasma at RHIC and LHC.Comment: Final version, To appear in Physical Review D, Minor modification, reference adde

    Black Hole Production at LHC: String Balls and Black Holes from pp and Lead-lead Collisions

    Full text link
    If the fundamental planck scale is near a TeV, then parton collisions with high enough center-of-mass energy should produce black holes. The production rate for such black holes at LHC has been extensively studied for the case of a proton-proton collision. In this paper, we extend this analysis to a lead-lead collision at LHC. We find that the cross section for small black holes which may in principle be produced in such a collision is either enhanced or suppressed, depending upon the black hole mass. For example, for black holes with a mass around 3 TeV we find that the differential black hole production cross section, d\sigma/dM, in a typical lead-lead collision is up to 90 times larger than that for black holes produced in a typical proton-proton collision. We also discuss the cross-sections for `string ball' production in these collisions. For string balls of mass about 1 (2) TeV, we find that the differential production cross section in a typical lead-lead collision may be enhanced by a factor up to 3300 (850) times that of a proton-proton collision at LHC.Comment: Added some discussion, final version to appear in Phys. Rev. D (rapid communications

    Infrared Behaviour of The Gluon Propagator in Non-Equilibrium Situations

    Get PDF
    The infrared behaviour of the medium modified gluon propagator in non-equilibrium situations is studied in the covariant gauge using the Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic screening mass is non-zero at the one loop level whenever the initial gluon distribution function is non isotropic with the assumption that the distribution function of the gluon is not divergent at zero transverse momentum. For isotropic gluon distribution functions, such as those describing local equilibrium, the magnetic mass at one loop level is zero which is consistent with finite temperature field theory results. Assuming that a reasonable initial gluon distribution function can be obtained from a perturbative QCD calculation of minijets, we determine these out of equilibrium values for the initial magnetic and Debye screening masses at energy densities appropriate to RHIC and LHC. We also compare the magnetic masses obtained here with those obtained using finite temperature lattice QCD methods at similar temperatures at RHIC and LHC.Comment: 21 pages latex, 4 figures, final version to be published in Phys. Rev.

    Scaling Rule for Nonperturbative Radiation in a Class of Event Shapes

    Full text link
    We discuss nonperturbative radiation for a recently introduced class of infrared safe event shape weights, which describe the narrow-jet limit. Starting from next-to-leading logarithmic (NLL) resummation, we derive an approximate scaling rule that relates the nonperturbative shape functions for these weights to the shape function for the thrust. We argue that the scaling reflects the boost invariance implicit in NLL resummation, and discuss its limitations. In the absence of data analysis for the new event shapes, we compare these predictions to the output of the event generator PYTHIA.Comment: 23 pages, 3 figures, uses JHEP3.cls (included); v2 - version to appear in JHE

    Stochastic trailing string and Langevin dynamics from AdS/CFT

    Full text link
    Using the gauge/string duality, we derive a set of Langevin equations describing the dynamics of a relativistic heavy quark moving with constant average speed through the strongly-coupled N=4 SYM plasma at finite temperature. We show that the stochasticity arises at the string world-sheet horizon, and thus is causally disconnected from the black hole horizon in the space-time metric. This hints at the non-thermal nature of the fluctuations, as further supported by the fact that the noise term and the drag force in the Langevin equations do not obey the Einstein relation. We propose a physical picture for the dynamics of the heavy quark in which dissipation and fluctuations are interpreted as medium-induced radiation and the associated quantum-mechanical fluctuations. This picture provides the right parametric estimates for the drag force and the (longitudinal and transverse) momentum broadening coefficients.Comment: 25 pages, 4 figure

    Worldline approach to Sudakov-type form factors in non-Abelian gauge theories

    Get PDF
    We calculate Sudakov-type form factors for isolated spin-1/2 particles (fermions) entering non-Abelian gauge-field systems. We consider both the on- and the off-mass-shell case using a methodology which rests on a worldline casting of field theories. The simplicity and utility of our approach derives from the fact that we are in a position to make, a priori, a more transparent separation (factorization), with respect to a given scale, between short- and long-distance physics than diagramatic methods.Comment: 18 pages. RevTex is used. No figure

    Measurement of branching fraction ratios and CP asymmetries in B±DCPK±B^{\pm} \to D_{CP}K^{\pm}

    Full text link
    We report results on the decay BDCPKB^{-} \to D_{CP}K^{-} and its charge conjugate using a data sample of 85.4 million BBˉB\bar{B} pairs recorded at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+ee^{+}e^{-} storage ring. Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes are determined to be B(BD0K)/B(BD0π)=0.077±0.005(stat)±0.006(sys){\cal B}(B^- \to D^0 K^-)/{\cal B}(B^- \to D^0 \pi^-)= 0.077 \pm 0.005(stat) \pm 0.006(sys), B(BD1K)/B(BD1π)=0.093±0.018(stat)±0.008(sys){\cal B}(B^- \to D_1 K^-)/{\cal B}(B^- \to D_1 \pi^-) = 0.093 \pm 0.018(stat) \pm 0.008(sys) and B(BD2K)/B(BD2π)=0.108±0.019(stat)±0.007(sys){\cal B}(B^- \to D_2 K^-)/{\cal B}(B^- \to D_2 \pi^-) = 0.108 \pm 0.019(stat) \pm 0.007(sys) where the indices 1 and 2 represent the CP=+1 and CP=-1 eigenstates of the D0D0ˉD^{0}-\bar{D^{0}} system, respectively. We find the partial-rate charge asymmetries for BDCPKB^{-} \to D_{CP}K^{-} to be A1=0.06±0.19(stat)±0.04(sys){\cal{A}}_1 = 0.06 \pm 0.19(stat) \pm 0.04(sys) and A2=0.19±0.17(stat)±0.05(sys){\cal{A}}_2 = -0.19 \pm 0.17(stat) \pm 0.05(sys).Comment: 10 pages, 3 figures, submitted to Physical Review

    Search for CP Violation in D^0--> K_S^0 pi^+pi^-

    Full text link
    We report on a search for CP violation in the decay of D0 and D0B to Kshort pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e- collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The resonance substructure of this decay is well described by ten quasi-two-body decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho, Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for CP violation in the amplitudes and phases that describe the decay D0 to K_S^0 pi+pi-.Comment: 10 pages, 3 figures, also available at http://w4.lns.cornell.edu/public/CLNS/, submitted to PR

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
    corecore