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The forces and flow fields associated with small-amplitude oscillations of a NACA 0012 

airfoil and flat plate are compared for zero and a post-stall angle of attack of fifteen degrees 

at a Reynolds number of 10,000. For zero degrees angle of attack at high Strouhal numbers 

the NACA airfoil experiences stable deflected jets, whereas the flat plate experiences 

deflected jets that are prone to periodic oscillation in direction resulting in oscillation of the 

lift coefficient with a period on the order of 100 cycles. At fifteen degrees angle of attack the 

flat plate is shown to produce a comparable increase in lift up to a Strouhal number of unity 

but after this the lift performance deteriorates. This is due to the Leading Edge Vortices 

(LEVs) convecting further from the upper surface. At higher plunge velocities a new mode 

of leading-edge vortex behavior is observed, for the NACA airfoil the leading-edge vortex is 

formed during the downward motion and then remains near the leading-edge and therefore 

loses its coherency through impingement with the upward moving airfoil. For the flat plate 

the upper surface LEV pairs with the lower surface LEV to form a dipole that self-advects 

normal to the free stream and is rapidly destroyed.  

Nomenclature 

a = amplitude of plunging motion  

A = peak to peak amplitude of plunging motion 

Cd = time-averaged drag coefficient  

Cl = time-averaged lift coefficient  

c = chord length 

f = frequency 

Re = Reynolds number, ρU∞c/ µ 

Src = Strouhal number based on chord, fc/U∞ 

SrA = Strouhal number based on amplitude, 2fa/U∞ 

t = time, t = 0 is top of motion 

T  = plunge period 

U∞ = free stream velocity 

V = velocity magnitude 

XTEV = streamwise position of trailing-edge vortex  

YTEV = cross-stream position of trailing-edge vortex 

α = angle of attack 

Γ = circulation 

µ = viscosity 

ρ = density 

I. Introduction 

here is currently growing interest in the field of Micro Air Vehicles (MAVs) due to their potential for a wide 

variety of applications both military and civil. However for MAVs to become a practical reality it will first be 

                                                           
*
 Research Officer, Department of Mechanical Engineering, Member AIAA. 
†
 Lecturer, Department of Mechanical Engineering, Member AIAA. 
‡
 Professor, Department of Mechanical Engineering, Associate Fellow AIAA. 

T 



2 

American Institute of Aeronautics and Astronautics 

necessary to move beyond the assumption of steady-state aerodynamics so as to overcome the prevalence of 

separation and stall at the low Reynolds numbers typical of micro air vehicles. Natural flyers have managed to 

circumvent this barrier through the exploitation of unsteady aerodynamic phenomenon, in particular the Leading 

Edge Vortex (LEV) [1]. The benefit of this approach can be seen in the truly exceptional agility of natural flyers 

over a wide range of Reynolds numbers. However, the large-amplitude, low-frequency motion suited to the 

muscular actuators of nature is not necessarily appropriate for the electrical actuators available to man. Instead 

small-amplitude high-frequency motion can be used to achieve similar plunge velocities in a more suitable manner. 

 

Previous results [2] for a NACA 0012 airfoil oscillating with small amplitude (a/c ≤ 0.2) at a post-stall angle of 

attack, α = 15°, showed that significant drag reduction was achievable. Indeed for higher Strouhal numbers thrust 

was observed. The switch from drag to thrust was shown to depend on the formation of what was termed a mode-2 

flow field. This is a flow field where an upper surface clockwise LEV forms during the downward motion and 

instead of convecting over the upper surface, it remains near the leading-edge and loses its coherency through 

impingement with the upward moving airfoil. Significant increase in lift coefficient is also possible [3], the largest 

recorded being 305% over the value for a stationary airfoil. 

 

Results have also been presented [4] for a NACA 0012 airfoil oscillating with small amplitude (a/c ≤ 0.2) at the 

smaller angles of attack of α = 5° and 10°. Depending on the initial conditions significant bifurcations were observed 

in the time-averaged lift coefficient. The cause was attributed to deflected jets. With a downward deflected jet large 

negative lift coefficients were observed; with an upward deflected jet very large positive lift coefficients of up to Cl 

= 5.5 were observed. A deflected jet is a result of pairing of the trailing-edge vortices to create a vortex dipole. Due 

to the asymmetric vortex positioning in this dipole, the vortices convect at an angle to the horizontal creating a 

deflected jet [5-10]. 

 

In this paper we will consider the effect of geometry on small-amplitude high-frequency motion as a form of lift 

enhancement and drag reduction. As thin airfoils are generally preferable at low Reynolds numbers [11], we shall 

compare the previous results for the NACA 0012 airfoil with new results for a flat plate geometry. We shall focus on 

two angles of attack, α = 0° to study the effect on deflected jets, and α = 15° to study the effect on post-stall 

performance. 

II. Experimental Apparatus and Procedures  

Force and Particle Image Velocimetry (PIV) measurements were conducted on a plunging flat plate airfoil mounted 

vertically in a closed-loop water tunnel, see Fig. 1. For a review of parameters studied, see Table 1; uncertainties are 

calculated using the methods of Moffat [12] taking into account both bias and precision errors. 

 

Table 1 Experimental Parameters 

Parameter Range Considered Uncertainty 

Re 10,000 +/- 200 

α 0° and 15° +/- 0.5° 

a/c 0.025 to 0.200 +/- 0.003 

Src 0 to 3 +/- 2.3% 

A. Experimental Setup 

The experiments were conducted in a free-surface closed-loop water tunnel (Eidetics Model 1520) at the University 

of Bath. The water tunnel is capable of flow speeds in the range 0 to 0.5 m/s and has a working section of 

dimensions 381 mm x 508 mm x 1530 mm. The turbulence intensity has previously [13] been measured by LDV to 

be less than 0.5%. 

 

In this study two cross sections were considered: a NACA 0012 airfoil and a flat plate of thickness 0.04c with semi-

circular leading and trailing edges, see Fig. 2. The flat plate was machined from 4 mm mild steel sheet. The wing 

has dimensions of 0.1 m chord x 0.3 m span and was mounted vertically in a 'shaker' mechanism, see Fig. 1. It was 

placed between an upper and lower splitter plate, with clearances maintained at 2 mm. The oscillations were 

supplied via a Motavario 0.37 kW three-phase motor, 5:1 wormgear and IMO Jaguar Controller. The position of the 

root of the airfoil was measured through a rotary encoder attached to the spindle of the worm gear shaft. The rotary 

encoder was also used to trigger the PIV system.  
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B. Force Measurements 

The forces applied in both the streamwise and cross-stream directions were measured via a two-component 

binocular strain gauge force balance [14]. The measured forces included both time-dependent aerodynamic forces as 

well as inertia forces, however the inertia forces do not contribute to the time-averaged force. Up to four force 

balances of differing rigidities were used so as to achieve the desired accuracy whilst minimizing flexibility. The 

signal from the strain gauges was amplified by a Wheatstone bridge circuit and sampled at either 2 kHz for 20,000 

samples (stationary cases), or 360 per cycle for a minimum of 50 cycles (dynamic cases). The forces were then 

calculated from the average voltage through linear calibration curves. To minimize uncertainty the calibration curves 

consisted of twenty three points, and were performed daily before and after testing. Each data set was repeated at 

least once and then averaged. The mean lift coefficient uncertainty for the stationary case is ± 0.03.  

C. PIV Measurements 

The flow was seeded with 8 – 12 µm hollow glass spheres. The velocity field in the wake of the airfoil was 

measured using a TSI Inc. 2D-PIV system incorporating a dual ND:YAG 50 mJ pulsed laser, 2 MP Powerview Plus 

12 bit CCD camera and TSI Model 610034 synchronizer. For measurements over the upper surface of the airfoil, the 

laser was positioned behind as shown in Fig. 1a. The shadow created by the airfoil therefore obscured the lower 

surface. For measurements over the lower surface the laser was positioned near the side wall of the tunnel as shown 

in Fig. 1b.  In both cases, the camera was located under the tunnel.  The PIV images were analyzed using the 

software Insight 3G. An FFT correlator was selected to generate a vector field of 199 x 148 vectors giving 

approximately a 1.2 mm spatial resolution for the upper surface, and 0.9 mm for the lower surface. The time-

averaged data is derived from 500 pairs of images, the phase-averaged from 100 pairs for the upper surface and up 

to 250 pairs (as required) for the lower surface. The upper and lower surface data were later merged through 

interpolation of the upper surface data onto the lower surface grid in MATLAB. 

III. Results and Discussion 

A. Stationary Airfoil 
The lift coefficient for the stationary two-dimensional NACA 0012 airfoil and flat plate are presented in Fig. 3. The 

shape of the NACA 0012 lift curve has previously been discussed [4], suffice to say that the nonlinear shape was 

indicitive of trailing-edge stall which commences in the region of α = 1°, becoming fully stalled once α > 10°. This 

description was supported by PIV measurements and in agreement with the results of other authors [15,16]. By 

comparison the curve for the flat plate is very linear resulting in stall at α ≈ 9°. For the angles of attack under 

consideration in this paper α = 0° predictably results in Cl ~ 0 due to the symmetry of the cross sections, and α = 15° 

is post-stall with the flat plate producing significantly more lift than the NACA 0012 airfoil. 

B. Zero Degrees Angle of Attack 
Shown in Fig. 4 is the time-averaged lift coefficient for a NACA 0012 airfoil oscillating at a range of Strouhal 

number, amplitude of a/c = 0.150, and α = 0°. The solid line represents data collected by starting at Src = 0 

(stationary), and increasing the Strouhal number accumulating data at discrete points along the way. Dashed lines 

represent data collected by impulsively starting at the maximum Strouhal number, and then decreasing the Strouhal 

number accumulating data at discrete points along the way. There are therefore three types of curves: one for 

increasing frequency; and two for decreasing frequency where two starting positions: hi = +a and hi = -a are 

considered. Up to Src = 1.5 all the curves match closely. After Src = 1.5 the curves bifurcate producing two distinct 

results: increasing and decreasing (hi = a) frequency produce very large positive lift coefficients; decreasing (hi = -a) 

frequency produces very large negative lift coefficients. Hence for the same experimental conditions two entirely 

different results are possible; indeed the two results are approximate mirror images of each other in the x-axis. 

Hereafter where two distinct results exist for the same experimental conditions it shall be termed a dual-flow, with 

the positive lift coefficient branch termed mode-A and the negative branch termed mode-B. 

 

Fig. 5 shows PIV measurements for a/c = 0.15 and α = 0° demonstrating a pre-bifurcation flow field (left column), 

mode-A flow field (central column), and mode-B flow field (right column). The time-averaged velocity magnitude 

(top row) for the pre-bifurcation flowfield shows a time-averaged jet aligned horizontally. The associated phase-

averaged vorticity flowfields demonstrate this jet to be the result of a reverse-Kármán vortex street. During the 

downward motion (a to c) a counter-clockwise vortex forms and sheds from the trailing-edge; during the upward 

motion (c to a) a clockwise vortex forms. Both of these vortices convect along a path approximately aligned with the 

horizontal with equidistant spacing. At the leading-edge an upper surface clockwise vortex forms during the 
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downward motion (see c) and loses its coherency during the upward motion through impingement with the upward 

moving airfoil as previously described by Cleaver et al. [17] and Visbal et al. [18]. Conversely during the upward 

motion a counter-clockwise leading-edge vortex forms (see a) and is dissipated during the downward motion. The 

flowfield as a whole is characterized by symmetry about the horizontal plane justifying the near-zero time-averaged 

lift coefficient. 

 

With the Strouhal number increased into the dual-flow regime this symmetry is broken. In the mode-A case (central 

column) the time-averaged jet is deflected upwards and there is a time-averaged high velocity region over the upper 

surface. In the mode-B case (right column) the inverse is true, a downward deflected jet and a high velocity leading-

edge region over the lower surface. The phase-averaged vorticity plots identify the cause to be trailing-edge vortex 

dipole formation. In the mode-A case (centre column) the clockwise TEV forms during the upward motion (c to a) 

and loiters near the airfoil during the downward motion (a to c) during which the counter-clockwise TEV forms. As 

a result of their proximity the vortices form a dipole that due to the relative positions of the vortices has a self-

induced velocity in the upward direction, thereby creating an upward deflected jet. In the mode-B case (right 

column) the inverse is true, i.e., the counter-clockwise TEV ‘loiters’ creating a vortex dipole with a downward self-

induced velocity and therefore a downward deflected jet. The mode-B flowfield therefore appears mirrored in the 

horizontal and 180 degrees out of phase with the mode-A case, compare Fig. 5c (centre) with Fig. 5a (right).  

 

Due to the asymmetry of the flow near the trailing-edge, asymmetry is also created near the leading-edge. In the 

mode-A case there is a strong upper surface LEV (Fig. 5c centre), and a comparatively weak lower surface LEV 

(Fig. 5a centre, supported by circulation measurements not shown here). This explains both the high velocity 

leading-edge region observed in the time-averaged plot and very high lift coefficient observed for this case, Cl ≈ 3.4. 

For the mode-B case the inverse is true, i.e., a weak upper surface LEV and strong lower surface LEV resulting in a 

large negative lift coefficient. It can therefore be concluded that the cause of the bifurcations and dual flow is the 

existence of stable deflected jets with their direction being determined by initial conditions. 

 

Fig. 6 shows the same measurements as in Fig. 4 except for the flat plate. Up until Src = 1.5 all curves match closely 

following similar trends to those observed for the NACA 0012 airfoil. After Src = 1.5 however the curves diverge 

significantly giving very erratic results and no repeatability. Despite the apparent randomness, these results fall 

within an upper and lower bound which bears a strong resemblance to that for the NACA 0012 airfoil, and with the 

same point of divergence. This suggests that deflected jets are also responsible in this case but that their direction is 

unstable, in a similar manner to the jet switching phenomenon of Heathcote and Gursul [7]. 

 

Force measurements were therefore performed over a much larger time period for the flat plate; however instead of 

averaging over the whole time period, the signal is averaged over individual periods, see Fig. 7. This figure 

demonstrates that the lift force oscillates approximately sinusoidally with amplitude of Cl ≈ 5 and period on the 

order of 100 plunge cycles. Using a sample size of 60 cycles as in Fig. 6 is therefore insufficient to accurately 

capture an average. 6000 cycles would be more appropriate but experimentally inconvenient. The period of this 

oscillation correlates well with the values observed by Heathcote and Gursul for periodic jet switching of rigid and 

flexible airfoils oscillating in still fluid. 

 

To capture the phenomenon responsible for the oscillatory lift coefficient phase-locked instantaneous PIV 

measurements were performed in conjunction with simultaneous force measurements, a selection are shown in Fig. 

8. These PIV measurements were all taken when h = -a. The flow field in the top row shows a vortex dipole pairing 

that due to its position would result in a downwards deflected jet. The cycle-averaged lift coefficient in this case is 

Cl = -5.1. The correlation between downward deflected jet and large negative lift coefficient mirrors that observed 

for the NACA 0012 airfoil. In the next row the TEV behavior is significantly different. The vortices are not paired 

and instead convect approximately horizontally. The lift coefficient for this case is Cl = -1.1. In the next time there is 

now an established upwards deflected jet with close vortex pairings which coincides with a lift coefficient of Cl = 

5.5. Figure 8 therefore clearly demonstrates that the flat plate is subject to jet switching with the downward deflected 

jet associated with very large negative lift coefficients and upwards deflected jets very large positive lift coefficients. 

Animations of the process show the transition from one to the other to be gradual, not distinct, justifying the 

approximately sinusoidal variation in lift coefficient observed in Fig. 7 and Fig. 8.  

 

As further evidence of the existence of jet switching the position and circulation of the trailing-edge vortices in the 

instantaneous phase-locked PIV results were measured, see Fig. 9. Figure 9a shows the vertical position of both the 
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clockwise and counter-clockwise TEV, see Fig. 9c for an example flow field. The position of both clockwise and 

counter-clockwise TEV clearly oscillates almost sinusoidally with a period on the order of 100T. Indeed a sine curve 

fitted to the clockwise vortex YTEV position gives a period of 102T. Likewise the normalized circulation of the TEVs 

also oscillates with a period of approximately 100T although the trend is not as pronounced, see Fig. 9b. Using these 

instantaneous measurements it is possible to make a direct comparison between the NACA 0012 bifurcation modes 

and their flat plate equivalents. The equivalents are defined by the position, YTEV, of the clockwise vortex (see Fig. 

9a). From 500 instantaneous flow fields, the 50 flow fields (10%) with the largest clockwise YTEV values are defined 

as mode A equivalent (upward deflected jet), and the 50 instantaneous flowfields (10%) with the smallest clockwise 

YTEV values are defined as mode B equivalent (downward deflected jet). Using this definition a comparison of phase-

averaged NACA flowfields and their flat plate equivalents is shown in Fig. 10. 

 

Fig. 10 demonstrates that despite the differences in geometry the flowfields are qualitatively similar. For mode A for 

both geometries the vortex pairing is indicative of an upwards deflected jet, and for mode B the vortex pairing is 

indicative of a downwards deflected jet. The position and strength of the trailing-edge vortices is similar between the 

two flowfields, this is quantified in Table 2.  
 

Table 2  Comparison of the mean instantaneous trailing-edge vortex characteristics for the 

NACA 0012 bifurcation flowfields and their flat plate equivalents for the single phase h = -a. 

Clockwise TEV Counter-Clockwise TEV 
 

XTEV YTEV Γ/U∞c XTEV YTEV Γ/U∞c 

NACA 0012 0.68 0.15 -4.12 0.44 0.48 3.62 
A 

Flat Plate 0.67 0.14 -3.71 0.40 0.41 3.90 

NACA 0012 1.04 -0.35 -2.98 0.16 0.31 4.33 
B 

Flat Plate 0.94 -0.37 -2.81 0.16 0.26 4.55 
 

Time-averaged lift coefficient measurements similar to those in Fig. 6 are shown for three further amplitudes in Fig. 

11. For a/c = 0.025, all three cases approximately follow Cl = 0 suggesting that the maximum Strouhal number 

tested was insufficient for deflected jets to occur. For a/c = 0.10 and 0.20 there is however a clear point of 

bifurcation which closely correlates with those observed for the NACA 0012 airfoil. After bifurcation the lift curves 

are erratic with a slight preference towards positive lift coefficients. The erratic nature of the curves suggests that 

unstable deflected jets also occur at these amplitudes.  

 

The core question is therefore what aspect of the flat plate geometry makes it subject to jet switching when the 

NACA 0012 airfoil at the same conditions is not. The obvious and logical choice would be the rounded trailing-edge 

however as will be shown in the next section the leading-edge vortex behavior for the flat plate is also significantly 

different and so this cannot be excluded as a possibility. 

C. Post-stall incidence (α = 15°) 
Shown in Fig. 12 is the time-averaged lift, and drag coefficient for a NACA 0012 airfoil (left column) and flat plate 

(right column) oscillated at a post-stall angle of attack of α = 15°, range of amplitudes and range of Strouhal 

numbers. Starting with the NACA 0012 airfoil both lift and drag coefficient are discussed in a recent journal article 

[17]. At low Strouhal numbers, small-amplitude airfoil oscillations increase lift coefficient significantly with greater 

effect for greater amplitude. The largest increase observed is therefore for the largest amplitude of a/c = 0.2 and 

305% over the value for a stationary airfoil. It was shown that this lift increase is approximately proportional to the 

non-dimensional plunge velocity, SrA = fA/U∞, and that superimposed onto this linear trend are local optima. These 

can be seen as the peaks at Src ≈ 0.5, 1, and 2. Hot-film measurements showed these to be due to resonance with the 

natural shedding frequency, its harmonics and subharmonics. At higher Strouhal numbers this linear trend is broken 

by a significant fall in lift, this can be seen around Src ≈ 1.15 for a/c = 0.2, Src ≈ 1.5 for a/c = 0.15, and Src ≈ 2.0 for 

a/c = 0.1. The cause of this fall has been shown to be a combination of the dissipation of the upper surface LEV and 

formation of a lower surface LEV. Small-amplitude airfoil oscillations can also improve drag performance 

significantly with greater effect for greater amplitude, see Fig. 12b left. The improvement is such that for the four 

larger amplitudes thrust is observed at higher Strouhal numbers. The switch from drag to thrust was shown to be 

highly dependent on the formation of what was termed a mode-2 flow field. This is characterized by the formation 
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of an upper surface leading-edge vortex during the airfoil’s downward motion and then its dissipation during the 

upward motion, as opposed to its convection into the wake in a mode-1 flow field.  

  

Now considering the force measurements for the flat plate, see Fig. 12 right column. Lift coefficient demonstrates 

the first two peaks at the same Strouhal numbers as for the NACA 0012 airfoil, Src ≈ 0.5 and 1. This would be 

expected as when the flow is fully separated the natural shedding frequency is determined by the frontal area 

[15,19,20] and for α = 15° this is almost identical for the NACA 0012 airfoil and flat plate. A second interesting 

feature is that although the lift performance of the NACA 0012 airfoil and flat plate are similar at low Strouhal 

numbers, at higher Strouhal numbers the lift performance of the flat plate deteriorates significantly. Furthermore in 

contrast to the sudden fall in lift observed for the NACA 0012 airfoil, this deterioration is gradual with its onset 

around Src = 1. As a result it is experienced by all amplitudes whereas the sudden fall in lift observed for the NACA 

0012 airfoil is delayed to higher Strouhal number by smaller amplitude, and is therefore not observed for the two 

smaller amplitudes. 

 

Drag coefficient demonstrates significantly worse performance for the flat plate. Indeed in comparison with the 

NACA 0012 airfoil there is essentially no reduction in drag coefficient, and as a result there is no switch from drag 

to thrust for any amplitude.  

 

Shown in Fig. 13 is the time-averaged velocity magnitude for both the NACA 0012 airfoil (left column) and flat 

plate (right column) for α = 15°, a/c = 0.025 and range of Strouhal numbers. Fig. 13a left presents the streamlines 

and the magnitude of the total velocity vector for the stationary NACA0012 airfoil at an angle of attack, α = 15
o
.  

There is a large region of separation over the suction surface of the airfoil.  The airfoil can therefore be classified as 

fully stalled in agreement with the force measurements already presented, and by other authors [21,22]. The flat 

plate experiences a similar region of separation, although due to the smaller radius of curvature at the leading-edge 

the point of separation is closer to the leading-edge. Oscillation even at small amplitude (a/c = 0.025) and low 

frequency (Src = 0.25 and 0.50) significantly reduces this separated region, see Fig. 13b and c. It is worth noting that 

due to the nature of time-averaged measurements the motion of the airfoil obscures the region in its direct vicinity. 

This makes the separated region appear smaller than is necessarily true. It is therefore preferable to consider the 

mean position (shown with solid line) when comparing with the stationary case. Even taking this into account the 

separation reduction is still significant for both NACA 0012 airfoil and flat plate. The reduction is however greater 

for the flat plate, which is reflected in the measured lift coefficient, ∆Cl = 0.5 vs ∆Cl = 0.38 for Src = 0.50. For both 

geometries there is also a high velocity leading-edge region suggesting LEV formation.  

 

With the Strouhal number increased to Src = 1 the high velocity leading-edge region is enhanced for both NACA 

0012 airfoil and flat plate. For the NACA 0012 airfoil the reduction in separation has continued however for the flat 

plate, although the nature of the separation has changed there is no further noticeable reduction. For Strouhal 

numbers larger than Src = 1 the flat plate experiences generally deteriorating lift performance whilst the NACA 0012 

airfoil experiences generally improving lift performance. This trend is reflected for Src = 1.25 to 3 in Fig. 13f to m. 

In contrast to the reducing separation of the NACA 0012 airfoil, the flat plate experiences increasing separation with 

increasing Strouhal number. In addition the high velocity leading-edge region becomes smaller for the flat plate and 

further from the upper surface. This trend of increased separation and decreased high velocity leading-edge region 

for the flat plate continues up to Src = 3. At Src = 3 (Fig. 13m) for the first time for the NACA 0012 airfoil there is a 

time-averaged jet. This is indicative of thrust creation due to the action of a reverse-Kármán vortex street which is 

reflected in the drag coefficient measurements shown in Fig. 12b. By contrast the flat plate does not demonstrate a 

reverse-Kármán vortex street and therefore experiences higher drag coefficient. 

 

Fig. 14 shows similar time-averaged velocity magnitude measurements for the larger amplitude: a/c = 0.050. For Src 

≤ 1 (Fig. 14a to e) the behaviour is qualitatively similar to that previously described for a/c = 0.025. With increasing 

Strouhal number both the NACA 0012 airfoil and the flat plate generally experience decreasing separation and 

increasing size of the high velocity leading-edge region. For Src > 1 (Fig. 14f to m) the behaviour of the NACA 

0012 airfoil and flat plate diverges. The NACA 0012 airfoil generally experiences reduced separation, increasing 

high velocity leading-edge region (up to Src = 2.25), and time-averaged jet (after Src = 2.25). By contrast the flat 

plate experiences increased separation, diminishing high velocity leading-edge region, and a very weak time-

averaged jet (after Src = 2.25). 
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To explain why there is such a difference between the geometries for Src > 1, phase-averaged vorticity contour plots 

are shown in Fig. 15 at the top of the motion, and Fig. 16 at the bottom of the motion for the same amplitude as Fig. 

13. Starting with Src = 1 at the top of the motion (Fig. 15a) for this case the increase in lift coefficient and reduction 

in separation is comparable for the NACA 0012 airfoil and flat plate, the phase-averaged flow fields however show 

significant differences. For the NACA 0012 airfoil there are two small clockwise LEVs close to the upper surface; 

whereas for the flat plate there is a single, larger, more diffuse clockwise LEV slightly further from the upper 

surface. In both cases these upper surface LEVs are formed during the downward motion (see Fig. 16a) before being 

shed and convected over the upper surface. The decreasing effective angle of attack in the second half of the upward 

motion combined with the action of the passing clockwise LEV initiates the formation of the counter-clockwise 

TEV seen at the trailing-edge in Fig. 15a. 

 

With the Strouhal number increased to Src = 1.5 the lift performance and separation reduction of the two has 

diverged. The phase-averaged flow fields (Fig. 15b and Fig. 16b) show the NACA 0012 airfoil to form a single 

clockwise LEV per cycle. This LEV is small, concentrated, and convects close to the surface. Conversely the flat 

plate also has a single clockwise LEV except it is larger, more diffuse, and convects further from the upper surface. 

Likewise the number of TEVs is similar for both geometries but they are generally larger, and more diffuse in the 

case of the flat plate. 

 

With further increase in Strouhal number to Src = 2.0 (Fig. 15c and Fig. 16c) these characteristics continue. There is 

a single LEV formed during each cycle but for the flat plate the vortex is larger, more diffuse, convects more slowly 

(as demonstrated by the vortex spacing), and convects further from the upper surface. Due to the large vertical 

distance between the convecting LEV and trailing-edge they do not interact with the TEVs. It is also interesting to 

note that the LEV for the flat plate has a strong secondary vortex. Due to this secondary vortex the vortex pair 

remains nearer to the leading-edge for a greater proportion of the cycle.  

 

Further increase in Strouhal number to Src = 2.5 (Fig. 15d and Fig. 16d) and Src = 3.0 (Fig. 15e and Fig. 16e) and the 

difference is further enhanced. For the NACA 0012 airfoil the LEVs are small, concentrated and convect very close 

to the upper surface interacting at the trailing-edge with the TEVs. Conversely for the flat plate the LEVs are larger, 

more diffuse, with a much stronger secondary vortex, and convect further from the upper surface. The trajectory of 

the upper surface LEV is shown in Fig. 17 relative to the mean position of the NACA 0012 airfoil and flat plate. 

Note the closer proximity of the LEV to the NACA airfoil’s surface during the entire process. The reason for the 

deteriorating lift performance of the flat plate at high Strouhal numbers can therefore be attributed to the trajectory 

of the LEV. As it is further from the airfoil surface, its lift enhancing effect will be significantly weakened and there 

will be greater time-averaged separation. In essence the NACA geometry utilizes the LEV in a more effective form 

of wake capture. 

 

Similar phase-averaged measurements are shown for a larger amplitude, a/c = 0.15 in Fig. 18 and Fig. 19. For this 

larger amplitude, larger plunge velocities are experienced, SrA ≤ 0.6 vs SrA ≤ 0.15, therefore new types of flow 

behaviour are observed. The results for the NACA 0012 airfoil have previously been discussed in detail in Cleaver 

et al. [17]. In summary the increasing lift performance is associated with increasing circulation of the upper surface 

LEV which forms during the downward motion, see Fig. 19. This continues until at higher Strouhal numbers the 

combination of the onset of the mode-2 flowfield and formation of a strong lower-surface LEV mean that the 

asymmetry between upper-surface and lower-surface vortex strengths is lost and the lift coefficient returns to 

approximately that of the stationary airfoil. 

 

For Src ≤ 1 the principal differences are the same as for the smaller amplitude previously discussed. For both 

geometries an upper surface LEV forms during the downward motion, but for the flat plate it is more diffuse, and 

convects further from the upper surface. For Src > 1 one begins to observe new behaviour, instead of the vortex 

dissipation typical of a mode-2 flowfield, the upper-surface LEV never appears to form for the flat plate, see Fig. 

19c and Fig. 19d. The only visible clockwise vorticity is a vague region above the leading-edge that appears as a 

‘plume’. 

 

Fig. 20 shows this process in more detail covering both the upper and lower surface for the same amplitude and 

Strouhal number combination as Figures 18d and 19d. The vorticity fields are in a loop starting at the top of the 

motion in the top left corner, moving down through the left column to the bottom of the motion in the bottom right, 

and then up through the right column back to the start. At t/T = 0 there is a clear, strong counter-clockwise lower 
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surface LEV. This interacts with the boundary-layer to form clockwise vorticity. During the initial stages of the 

downward motion (t/T = 0 to 2/12) this clockwise vorticity forms a vortex that pinches off by the point of maximum 

effective angle of attack (t/T = 3/12). This clockwise vortex pairs with the counter-clockwise to create a vortex 

dipole that convects away from the leading-edge in an upstream direction (t/T = 2/12 to 7/12). During this time both 

vortices rapidly dissipate. This dissipation in the phase-averaged flow is an indication of the vortices becoming 

highly three-dimensional. 

 

This behaviour is in stark contrast to the NACA 0012 airfoil, a direct comparison is shown in Fig. 21. The NACA 

0012 airfoil shows a clockwise upper surface LEV forms during the downward motion, before losing its coherency 

during the upward motion. Likewise a counter-clockwise lower surface LEV forms during the lower surface LEV 

forms during the upward motion and has already started to lose its coherency at the top of the motion. There is no 

sign of interaction between the upper and lower surface LEV.  

 

The growth and dissipation of the LEVs is quantified in Fig. 22. The NACA 0012 airfoil is denoted by solid 

symbols and lines. The growth of the upper surface clockwise LEV for the NACA airfoil is shown in the range t/T = 

0 to 0.375 where it reaches its maximum strength of Γ/U∞c = -2.90. After this the vortex decays rapidly through 

impingement with the upward moving airfoil. The lower surface counter-clockwise vortex likewise grows in the 

range t/T = 0.5 to 0.875 attaining its maximum value of Γ/U∞c = 3.26, then decays rapidly through impingement 

with the downward moving airfoil. The growth phase for the flat plate clockwise vortex is similar to that for the 

NACA airfoil except the whole process is advanced by t/T ≈ 0.125. This is due to the reinforcing effect of the 

counter-clockwise vortex visible at t/T = 0/12 to 2/12 in Fig. 20. The peak value is almost identical to the NACA 

airfoil, Γ/U∞c = -2.88. The flat plate counter-clockwise vortex however is significantly different from its NACA 

counterpart. It is slightly advanced by t/T ≈ 0.05, attaining a significantly higher peak circulation of Γ/U∞c = 4.18, 

and then decays more slowly. The cause of dipole formation for the flat plate can therefore be attributed to the 

stronger lower surface vortex promoting premature formation of the upper surface vortex. This behaviour is very 

similar to that previously described here and elsewhere [4], for TEV dipole formation on a NACA 0012 airfoil under 

similar conditions.  

IV. Conclusions 

Experiments were performed to compare the forces and flow fields of both a NACA 0012 airfoil and flat plate 

oscillating with small-amplitude at an angle of attack of 0° and 15°. For 0° at high Strouhal number the NACA 

airfoil is subject to stable deflected jets resulting in very large negative or positive lift coefficients with the direction 

determined by initial conditions. The flat plate is likewise subject to deflected jets however the direction oscillates 

approximately sinusoidally between upward and downward with a period on the order of 100 cycles. The lift 

coefficient is therefore also oscillatory. 

 

For 15° at low Strouhal number, the force coefficients for the NACA airfoil and flat plate are similar. Both 

experience significant increase in lift coefficient with greater effect for greater amplitude and local optima due to 

resonance with the natural shedding frequency, its harmonics and subharmonics. This increase is associated with 

reduced time-averaged separation and a high velocity leading-edge region due to LEV formation. However, after a 

Strouhal number of unity the flat plate experiences deteriorating lift performance across all amplitudes studied. At 

small amplitudes this is primarily due to the LEV convecting further from the upper surface; at large amplitudes this 

is due the LEVs forming a dipole which convects normal to the freestream resulting in increased time-averaged 

separation and reduced lift. 
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Fig. 1 Experimental setup a) for PIV measurements over the upper surface, and b) for PIV measurements 

over the lower surface. 
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Fig. 2 Airfoil cross-section showing: NACA 0012 (top) and flat plate (bottom).  

 

 

 

 

 

 

 

 
Fig. 3 Lift coefficient for the stationary NACA 0012 airfoil and flat plate at a Reynolds number of Re = 

10,000.  
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Fig. 4 – Lift coefficient for the NACA 0012 airfoil oscillating with a/c = 0.15 at α = 0°. 
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Fig. 5 Flow fields for a/c = 0.150 and α = 0°, left column shows Src = 1.500 

(pre-bifurcation), central column shows Src = 2.025 (mode A), and right 

column shows Src = 2.025 (mode B). Top row is time-averaged velocity 

magnitude, and the remaining rows are phase-averaged vorticity contour 

plots with the phase of the cycle shown on the diagram to the left. 
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Fig. 6 Lift coefficient for flat plate airfoil oscillating with a/c = 0.15 at α = 0°. 

 

 

 

 
Fig. 7 Period-averaged lift coefficient for the flat plate oscillating at a/c = 0.15, Src = 2.025, and α = 0°. 
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Fig. 8 Jet-switching phenomenon for the flat plate oscillating with α = 0°, Src = 2.025 and a/c = 0.15. Shown on 

the left are instantaneous PIV results phase-locked to h = -a. Shown on the right are simultaneous cycle-

averaged lift coefficient measurements with the time of the velocity vector plot denoted by a solid circular 

symbol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

American Institute of Aeronautics and Astronautics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 a) Instantaneous cross-stream position of trailing-edge vortex as measured in phase-locked 

measurements at h = -a. b) Instantaneous normalized circulation as measured in phase-locked measurements 

at h = -a. c) Inset identifying clockwise and counter-clockwise vortex for two extreme cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Comparison of phase-averaged NACA 0012 bifurcation flow fields with their flat plate equivalents: a) 

mode A, and b) mode B. 
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Fig. 11 Individual runs of time-averaged lift coefficient for the flat plate at α = 0°, and: a) a/c = 0.025, b) a/c = 

0.100, and c) a/c = 0.200.  
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Fig. 12 a) lift coefficient, and b) drag coefficient plotted against Strouhal number based on chord for the 

NACA 0012 airfoil (left column) and the rigid flat plate (right column) at α = 15°.   
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Fig. 13 Time-averaged velocity magnitude for the NACA 0012 airfoil (left column) and flat plate (right 

column) for a/c = 0.025 and α = 15° at Strouhal numbers of: a) Src = 0, b) Src = 0.25, c) Src = 0.50, d) Src = 

0.75, e) Src = 1.00, f) Src = 1.25, g) Src = 1.50, h) Src = 1.75, i) Src = 2.00, j) Src = 2.25, k) Src = 2.50, l) Src = 2.75, 

and m) Src = 3.00 . Continued next page 
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Fig. 13 Continued 
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Fig. 14 Time-averaged velocity magnitude for the NACA 0012 airfoil (left column) and flat plate (right 

column) for a/c = 0.050 and α = 15° at Strouhal numbers of: a) Src = 0, b) Src = 0.25, c) Src = 0.50, d) Src = 

0.75, e) Src = 1.00, f) Src = 1.25, g) Src = 1.50, h) Src = 1.75, i) Src = 2.00, j) Src = 2.25, k) Src = 2.50, l) Src = 2.75, 

and m) Src = 3.00 . Continued next page 
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Fig. 14 Continued. 
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Fig. 15 Phase-averaged vorticity contour plots at the top of the motion for the NACA 0012 airfoil (left 

column) and flat plate (right column) for a/c = 0.025 and α = 15° at Strouhal numbers of: a) Src = 1.00, b) Src 

= 1.50, c) Src = 2.00, d) Src = 2.50, and e) Src = 3.00.  
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Fig. 16 Phase-averaged vorticity contour plots at the bottom of the motion for the NACA 0012 airfoil (left 

column) and flat plate (right column) for a/c = 0.025 and α = 15° at Strouhal numbers of: a) Src = 1.00, b) Src 

= 1.50, c) Src = 2.00, d) Src = 2.50, and e) Src = 3.00.  

 

 

 

 

 

e) 

a) 

b) 

c) 

d) 



25 

American Institute of Aeronautics and Astronautics 

 

 

 

 

 

 

 

 

Fig. 17 – Vortex trajectories as derived from the phase-averaged PIV measurements relative to the mean 

position for a) the NACA 0012 airfoil, and b) the flat plate with a/c = 0.025, α = 15° and Src = 3. 
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Fig. 18 Phase-averaged vorticity contour plots at the top of the motion for the NACA 0012 airfoil (left 

column) and flat plate (right column) for a/c = 0.150 and α = 15° at Strouhal numbers of: a) Src = 0.50, b) Src 

= 1.00, c) Src = 1.50, and d) Src = 2.00.  
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Fig. 19 Phase-averaged vorticity contour plots at the bottom of the motion for the NACA 0012 airfoil (left 

column) and flat plate (right column) for a/c = 0.150 and α = 15° at Strouhal numbers of: a) Src = 0.50, b) Src 

= 1.00, c) Src = 1.50, and d) Src = 2.00.  
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Fig. 20 Phase-averaged vorticity contour plots for the 2D rigid flat plate at twelve phases in the cycle for α = 

15°, a/c = 0.15 and Src = 2.00.  
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Fig. 21 Phase-averaged vorticity contour plots for the NACA 0012 airfoil (left) and flat plate (right) at four 

phases in the cycle for α = 15°, a/c = 0.15 and Src = 2.00.  
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Fig. 22 Leading-edge vortex circulation from phase-averaged measurements for the NACA 0012 airfoil and 

rigid flat plate for α = 15°, a/c = 0.15 and Src = 2.00. Note the delayed formation of the clockwise vortex and 

premature formation of the counter-clockwise vortex for the flat plate. 


