26 research outputs found

    Tumor-Associated Microglia/Macrophages as a Predictor for Survival in Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance Overcoming Strategy by Combination Therapy

    Get PDF
    Tumor recurrence is the main challenge in glioblastoma (GBM) treatment. Gold standard therapy temozolomide (TMZ) is known to induce upregulation of IL8/CXCL2/CXCR2 signaling that promotes tumor progression and angiogenesis. Our aim was to verify the alterations on this signaling pathway in human GBM recurrence and to investigate the impact of TMZ in particular. Furthermore, a combi-therapy of TMZ and CXCR2 antagonization was established to assess the efficacy and tolerability. First, we analyzed 76 matched primary and recurrent GBM samples with regard to various histological aspects with a focus on the role of TMZ treatment and the assessment of predictors of overall survival (OS). Second, the combi-therapy with TMZ and CXCR2-antagonization was evaluated in a syngeneic mouse tumor model with in-depth immunohistological investigations and subsequent gene expression analyses. We observed a significantly decreased infiltration of tumor-associated microglia/macrophages (TAM) in recurrent tumors, while a high TAM infiltration in primary tumors was associated with a reduced OS. Additionally, more patients expressed IL8 in recurrent tumors and TMZ therapy maintained CXCL2 expression. In mice, enhanced anti-tumoral effects were observed after combi-therapy. In conclusion, high TAM infiltration predicts a survival disadvantage, supporting findings of the tumor-promoting phenotype of TAMs. Furthermore, the combination therapy seemed to be promising to overcome CXCR2-mediated resistance

    Three-Dimensional Iron Oxide Nanoparticle-Based Contrast-Enhanced Magnetic Resonance Imaging for Characterization of Cerebral Arteriogenesis in the Mouse Neocortex

    Get PDF
    Purpose: Subsurface blood vessels in the cerebral cortex have been identified as a bottleneck in cerebral perfusion with the potential for collateral remodeling. However, valid techniques for non-invasive, longitudinal characterization of neocortical microvessels are still lacking. In this study, we validated contrast-enhanced magnetic resonance imaging (CE-MRI) for in vivo characterization of vascular changes in a model of spontaneous collateral outgrowth following chronic cerebral hypoperfusion. Methods: C57BL/6J mice were randomly assigned to unilateral internal carotid artery occlusion or sham surgery and after 21 days, CE-MRI based on T2*-weighted imaging was performed using ultra-small superparamagnetic iron oxide nanoparticles to obtain subtraction angiographies and steady-state cerebral blood volume (ss-CBV) maps. First pass dynamic susceptibility contrast MRI (DSC-MRI) was performed for internal validation of ss-CBV. Further validation at the histological level was provided by ex vivo serial two-photon tomography (STP). Results: Qualitatively, an increase in vessel density was observed on CE-MRI subtraction angiographies following occlusion; however, a quantitative vessel tracing analysis was prone to errors in our model. Measurements of ss-CBV reliably identified an increase in cortical vasculature, validated by DSC-MRI and STP. Conclusion: Iron oxide nanoparticle-based ss-CBV serves as a robust, non-invasive imaging surrogate marker for neocortical vessels, with the potential to reduce and refine preclinical models targeting the development and outgrowth of cerebral collateralization

    Long term measurements of aerosol optical properties at a primary forest site in Amazonia

    Get PDF
    A long term experiment was conducted in a primary forest area in Amazonia, with continuous in-situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in the Amazon Basin. Two major classes of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm(-1) to 22 Mm(-1), whereas absorption at 637 nm increased from 0.5 Mm(-1) to 2.8 Mm(-1) from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode (PM2) particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 +/- 0.08 at 637 nm for dry aerosols. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this primary forest site the radiative balance was dominated by the cloud cover, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency absolute values were below -3.5 Wm(-2) in 70% of the wet season days and in 46% of the dry season days. Besides the seasonal variation, the influence of out-of-Basin aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected, characterized by a consistent increase on particle scattering (factor 2.5) and absorption coefficients (factor 5). Episodes of biomass burning and mineral dust particles advected from Africa were observed between January and April, characterized by enhanced concentrations of crustal elements (Al, Si, Ti, Fe) and potassium in the fine mode. During these episodes, median particle absorption coefficients increased by a factor of 2, whereas median SSA values decreased by 7 %, in comparison to wet season conditions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)European Integrated FP6 project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) under the scope of LBA experimentUniversidade Federal de São Paulo, Inst Environm Chem & Pharmaceut Sci, Dept Earth & Exact Sci, São Paulo, BrazilUniv São Paulo, Inst Phys, Dept Appl Phys, São Paulo, BrazilLeibniz Inst Tropospher Res, Leipzig, GermanyNatl Inst Amazonian Res INPA, Manaus, Amazonas, BrazilLund Univ, Inst Phys, Div Nucl Phys, Lund, SwedenHarvard Univ, Dept Earth & Planetary Sci, Div Engn & Appl Sci, Cambridge, MA 02138 USAUniv Helsinki, Div Atmospher Sci, Dept Phys Sci, Helsinki, FinlandUniversidade Federal de São Paulo, Inst Environm Chem & Pharmaceut Sci, Dept Earth & Exact Sci, São Paulo, BrazilFAPESP: AEROCLIMA 08/58100-2European Integrated FP6 project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) under the scope of LBA experiment: 34684Web of Scienc

    Concomitant Targeting of EGF Receptor, TGF-beta and Src Points to a Novel Therapeutic Approach in Pancreatic Cancer

    Get PDF
    To test the hypothesis that concomitant targeting of the epidermal growth factor receptor (EGFR) and transforming growth factor-beta (TGF-β) may offer a novel therapeutic approach in pancreatic cancer, EGFR silencing by RNA interference (shEGFR) was combined with TGF-β sequestration by soluble TGF-β receptor II (sTβRII). Effects on colony formation in 3-dimensional culture, tumor formation in nude mice, and downstream signaling were monitored. In both ASPC-1 and T3M4 cells, either shEGFR or sTβRII significantly inhibited colony formation. However, in ASPC-1 cells, combining shEGFR with sTβRII reduced colony formation more efficiently than either approach alone, whereas in T3M4 cells, shEGFR-mediated inhibition of colony formation was reversed by sTβRII. Similarly, in vivo growth of ASPC-1-derived tumors was attenuated by either shEGFR or sTβRII, and was markedly suppressed by both vectors. By contrast, T3M4-derived tumors either failed to form or were very small when EGFR alone was silenced, and these effects were reversed by sTβRII due to increased cancer cell proliferation. The combination of shEGFR and sTβRII decreased phospho-HER2, phospho-HER3, phoshpo-ERK and phospho-src (Tyr416) levels in ASPC-1 cells but increased their levels in T3M4 cells. Moreover, inhibition of both EGFR and HER2 by lapatinib or of src by SSKI-606, PP2, or dasatinib, blocked the sTβRII-mediated antagonism of colony formation in T3M4 cells. Together, these observations suggest that concomitantly targeting EGFR, TGF-β, and src may constitute a novel therapeutic approach in PDAC that prevents deleterious cross-talk between EGFR family members and TGF-β-dependent pathways

    Octamer-dependent transcription in T cells is mediated by NFAT and NFκBNF-\kappa B

    Get PDF
    The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and NFκBNF-\kappa B-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/NFκBNF-\kappa B sites. An array of genetic and biochemical analyses illustrates the involvement of the Ca2+Ca^{2+}/calmodulin-dependent phosphatase calcineurin as well as NFAT and NFκBNF-\kappa B transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or NFκBNF-\kappa B transcription factors

    Three-Dimensional Iron Oxide Nanoparticle-Based Contrast-Enhanced Magnetic Resonance Imaging for Characterization of Cerebral Arteriogenesis in the Mouse Neocortex

    No full text
    Purpose: Subsurface blood vessels in the cerebral cortex have been identified as a bottleneck in cerebral perfusion with the potential for collateral remodeling. However, valid techniques for non-invasive, longitudinal characterization of neocortical microvessels are still lacking. In this study, we validated contrast-enhanced magnetic resonance imaging (CE-MRI) for in vivo characterization of vascular changes in a model of spontaneous collateral outgrowth following chronic cerebral hypoperfusion. Methods: C57BL/6J mice were randomly assigned to unilateral internal carotid artery occlusion or sham surgery and after 21 days, CE-MRI based on T2*-weighted imaging was performed using ultra-small superparamagnetic iron oxide nanoparticles to obtain subtraction angiographies and steady-state cerebral blood volume (ss-CBV) maps. First pass dynamic susceptibility contrast MRI (DSC-MRI) was performed for internal validation of ss-CBV. Further validation at the histological level was provided by ex vivo serial two-photon tomography (STP). Results: Qualitatively, an increase in vessel density was observed on CE-MRI subtraction angiographies following occlusion; however, a quantitative vessel tracing analysis was prone to errors in our model. Measurements of ss-CBV reliably identified an increase in cortical vasculature, validated by DSC-MRI and STP. Conclusion: Iron oxide nanoparticle-based ss-CBV serves as a robust, non-invasive imaging surrogate marker for neocortical vessels, with the potential to reduce and refine preclinical models targeting the development and outgrowth of cerebral collateralization.ISSN:1662-453XISSN:1662-454

    Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: secondary analysis of a prospective randomised trial.

    Get PDF
    INTRODUCTION The Nutritional Risk Screening 2002 (NRS 2002) identifies patients at risk of malnutrition. We studied the prognostic implications of this score with regard to short-term and long-term clinical outcomes in a well-characterised cohort of medical inpatients from a previous trial. METHODS This is a secondary analysis of an investigator-initiated, prospective randomised controlled multicenter trial in Switzerland (EFFORT) that compared the effects of an individualised nutritional support intervention with standard of care. We investigated associations between admission NRS and several short-term and long-term outcomes using multivariable regression analyses. RESULTS Of the 2028 patients, 31% had an NRS of 3, 38% of 4 and 31% of ≥5 points, and 477 (24%) died during the 180 days of follow-up. For each point increase in NRS, we found a stepwise increase in risk of 30-day mortality (adjusted Hazard Ratio (HR) 1.22 (95% CI 1.00 to 1.48), p = 0.048) and 180-day mortality (adjusted HR 1.37 (95% CI 1.22 to 1.55), p < 0.001). NRS was associated with length of hospital stay (adjusted difference of 0.60 days per NRS point increase, 95%CI 0.23 to 0.97, p = 0.002) and functional outcomes at 180 days (adjusted decrease in Barthel index of -4.49 points per NRS point increase, 95%CI -6.54 to -2.45, p < 0.001). In a subgroup analysis, associations of NRS and short-term adverse outcomes were less pronounced in patients receiving nutritional support (intervention group) compared to control group patients (adjusted HR for 30-day mortality 1.12 [95%CI 0.83 to 1.52, p = 0.454] vs. 1.33 [95%CI 1.02 to 1.72, p = 0.032]). CONCLUSION The NRS is a strong and independent risk score for malnutrition-associated mortality and adverse outcomes over 180 days. Our data provide strong evidence that the nutritional risk, however, is modifiable and can be reduced by the provision of adequate nutritional support

    Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model

    Get PDF
    Simple Summary: Stereotactic radiosurgery (SRS) provides precise high-dose irradiation of intracranial tumors. However, its radiobiological mechanisms are not fully understood. This study aims to establish CyberKnife SRS on an intracranial glioblastoma tumor mouse model and assesses the early radiobiological effects of radiosurgery. Following exposure to a single dose of 20 Gy, the tumor volume was evaluated using MRI scans, whereas cellular proliferation and apoptosis, tumor vasculature, and immune response were evaluated using immunofluorescence staining. The mean tumor volume was significantly reduced by approximately 75% after SRS. The precision of irradiation was verified by the detection of DNA damage consistent with the planned dose distribution. Our study provides a suitable mouse model for reproducible and effective irradiation and further investigation of radiobiological effects and combination therapies of intracranial tumors using CyberKnife. Abstract: CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches
    corecore