27 research outputs found

    Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella During Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    Get PDF
    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the hosts' humoral and cellular immunity to NTS which increases their susceptibility to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria-negative, non-febrile malaria-negative. S Typhimurium (STm)-specific; serum bactericidal activity (SBA) and blood bactericidal activity (WBBA), complement C3 deposition and neutrophil respiratory burst activity (NRBA) were measured. SBA to STm was reduced in febrile P. falciparum infected (Median -0.201og10, IQR [-1.85, 0.32]) compared to non-febrile malaria-negative (Median -1.42log10, IQR [-2.0, -0.47], p=0.052). In relation to SBA, C3 deposition on STm was significantly reduced in febrile P. falciparum infected (Median 7.5%, IQR [4.1, 15.0]) compared to non-febrile malaria-negative (Median 29%, IQR [11.8, 48.0], p=0.048). WBBA to STm was significantly reduced in febrile P. falciparum infected (Median 0.25log10, IQR [-0.73, 1.13], p=0.0001) compared to non-febrile malaria-negative (Median -1.0log10, IQR [-1.68, -0.16]). In relation to WBBA, STm-specific NRBA was reduced in febrile P. falciparum infected (Median 8.8% IQR [3.7, 20], p=0.0001) compared to non-febrile malaria-negative (Median 40.5% IQR [33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to STm in children during malaria episodes, which may explain the increased risk of iNTS observed in children from malaria endemic settings. The mechanisms underlying humoral immunity impairment are incompletely understood and should be explored further

    Risk of nontyphoidal Salmonella bacteraemia in African children is modified by STAT4

    Get PDF
    Nontyphoidal Salmonella (NTS) is a major cause of bacteraemia in Africa. The disease typically affects HIV-infected individuals and young children, causing substantial morbidity and mortality. Here we present a genome-wide association study (180 cases, 2677 controls) and replication analysis of NTS bacteraemia in Kenyan and Malawian children. We identify a locus in STAT4, rs13390936, associated with NTS bacteraemia. rs13390936 is a context-specific expression quantitative trait locus for STAT4 RNA expression, and individuals carrying the NTS-risk genotype demonstrate decreased interferon-gamma (IFN gamma) production in stimulated natural killer cells, and decreased circulating IFN gamma concentrations during acute NTS bacteraemia. The NTS-risk allele at rs13390936 is associated with protection against a range of autoimmune diseases. These data implicate interleukin-12-dependent IFN gamma-mediated immunity as a determinant of invasive NTS disease in African children, and highlight the shared genetic architecture of infectious and autoimmune disease.Peer reviewe

    The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    Get PDF
    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313

    Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

    Get PDF
    An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data

    Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    Get PDF
    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species

    A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa

    Get PDF
    Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures

    Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

    No full text
    Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S . Typhimurium ST313.Methods: Six S . Typhimurium ST313 bloodstream isolates, three of which were antibody resistant, were studied. Genomic content (single nucleotide polymorphisms and larger chromosomal modifications) of the strains was determined by Illumina and PACBIO sequencing, and functionally characterized using RNA-seq, transposon directed insertion site sequencing (TraDIS), targeted gene deletion and transfer of selected point mutations in an attempt to identify features associated with serum resistance.Results: Sequence polymorphisms in genes from strains with atypical serum susceptibility when transferred from strains that were highly resistant or susceptible to a strain that exhibited intermediate susceptibility did not significantly alter serum killing phenotype. No large chromosomal modifications typified serum resistance or susceptibility. Genes required for resistance to serum identified by TraDIS and RNA-seq included those involved in exopolysaccharide synthesis, iron scavenging and metabolism. Most of the down-regulated genes were associated with membrane proteins. Resistant and susceptible strains had distinct transcriptional responses to serum, particularly related to genes responsible for polysaccharide biosynthesis. There was higher upregulation of wca locus genes, involved in the biosynthesis of colanic acid exopolysaccharide, in susceptible strains and increased expression of fepE , a regulator of very long-chain lipopolysaccharide in resistant strains.Conclusion: Clinical isolates of S . Typhimurium ST313 exhibit distinct antibody susceptibility phenotypes that may be associated with changes in gene expression on exposure to serum

    Case-control investigation of invasive Salmonella disease in Africa - comparison of human, animal and household environmental isolates find no evidence of environmental or animal reservoirs of invasive clades/strains

    Get PDF
    Background Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. Methodology Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. Findings 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S . Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. Conclusions The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid ( S . Typhi) carrier state was not detected. The lack of S . Typhi isolates from the household environment suggests that further methodological development is needed to culture S . Typhi from the environment. Author summary Invasive Salmonella infections cause the loss of millions of disability adjusted life years (DALYs) every year globally. The two main types of invasive Salmonella infections in Africa are i) typhoid fever, caused by Salmonella Typhi, and ii) invasive Non-Typhoidal Salmonella (iNTS) disease, primarily caused in our setting by Salmonella Typhimurium. Despite the high disease burden, and the observed differences between the epidemiology of typhoid and iNTS disease, we lack an understanding of the reservoirs and transmission routes of iNTS. Therefore, we carried out extensive microbiological sampling of the household members, domestic animals, and living environments of patients with invasive Salmonella infections, and of geographically-matched control households, and investigated the genetic relationships between household Salmonella and index-case blood-stream isolates by whole genome sequencing (WGS). We identified a wide range of NTS serovars / sequence types across all households and sample-types, but only identified Salmonella that matched iNTS that matched invasive cases strains in the stool of healthy people from the same households. Our findings support, but cannot prove, the hypothesis that iNTS-associated strains are transmitted from person-to-person. Boot-sock sampling of the household environment gave the highest yield of Salmonella of any of our sampling strategies. None of the 41 environmental Salmonella isolates from non-human sources, including 4 domestic animal-associated isolates, matched the disease-causing sequence types. Our findings are consistent with a hypothesis that the reservoir of Typhimurium iNTS infections is the human gastrointestinal tract, and transmission occurs within households. Longitudinal studies are required, however, to confirm this hypothesis
    corecore