29 research outputs found

    El potencial impacto económico de la pandemia por COVID-19 en las regiones argentinas y sus patrones productivos sectoriales en el periodo abril-junio de 2020

    Get PDF
    The goal of this paper is to assess the resilience of Portuguese banks to the potential impact of the COVID-19 pandemic. For this purpose, diagnostic variables of 19 banks were selected and prioritized using linear ordering methods. This methodology allowed us to perform rankings of banks using six linear ordering methods and taking into account two weighting procedures and two variants of the diagnostic feature. The study was also supplemented by a sensitivity analysis and an optimization procedure aimed at identifying the optimal linear ordering method. The main results obtained show that the resilience of Portuguese banks is not evenly distributed among individual banks. These findings could be used by regulators to plan support measures for the most fragile banks

    Satellite DNA evolution in Corvoidea inferred from short and long reads

    Get PDF
    Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera

    Chromosomal speciation in the genomics era: Disentangling phylogenetic evolution of rock-wallabies

    Get PDF
    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to “chromosomal speciation.” Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciationThis research was supported by an Australian Research Council Discovery Grant (DP160100187) as well as and ARC Laureate Fellowship awarded to CM (ARC FL110100104)

    Real‐world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy

    Full text link
    Targeting phylogenetic diversity (PD) in systematic conservation planning is an efficient way to minimize losses across the Tree of Life. Considering representation of genetic diversity below and above species level, also allows robust analyses within systems where taxonomy is in flux. We use dense sampling of phylogeographic diversity for 11 lizard genera, to demonstrate how PD can be applied to a policy‐ready conservation planning problem. Our analysis bypasses named taxa, using genetic data directly to inform conservation decisions. We highlight areas that should be prioritized for ecological management, and also areas that would provide the greatest benefit if added to the multisector conservation estate. We provide a rigorous and effective approach to represent the spectrum of genetic and species diversity in conservation planning.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145539/1/conl12438.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145539/2/conl12438-sup-0001-figureS1-S2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145539/3/conl12438_am.pd

    Digest : Life history evolution in Darwin's dream ponds

    No full text
    Can variation in sex‐specific parental investment lead to sexual dimorphism in immune response? Keller et al. (2018) measured immune cell parameters, expression of candidate genes and composition of buccal microbiota in mouthbrooding cichlid species from Lake Tanganyika that show either maternal or biparental care. They found that maternal mouthbrooding species have increased sexual dimorphism in immune parameters, while biparental mouthbrooders exhibit an upregulated adaptive immune response, suggesting resource allocation shifts between parental investment and the immune system

    Data from: Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards

    No full text
    Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus. We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards

    Data from: Accounting for uncertainty in gene tree estimation: summary-coalescent species tree inference in a challenging radiation of Australian lizards

    No full text
    Accurate gene tree inference is an important aspect of species tree estimation in a summary-coalescent framework. Yet, in empirical studies, inferred gene trees differ in accuracy due to stochastic variation in phylogenetic signal between targeted loci. Empiricists should, therefore, examine the consistency of species tree inference, while accounting for the observed heterogeneity in gene tree resolution of phylogenomic data sets. Here, we assess the impact of gene tree estimation error on summary-coalescent species tree inference by screening 2000{\sim}2000 exonic loci based on gene tree resolution prior to phylogenetic inference. We focus on a phylogenetically challenging radiation of Australian lizards (genus Cryptoblepharus, Scincidae) and explore effects on topology and support. We identify a well-supported topology based on all loci and find that a relatively small number of high-resolution gene trees can be sufficient to converge on the same topology. Adding gene trees with decreasing resolution produced a generally consistent topology, and increased confidence for specific bipartitions that were poorly supported when using a small number of informative loci. This corroborates coalescent-based simulation studies that have highlighted the need for a large number of loci to confidently resolve challenging relationships and refutes the notion that low-resolution gene trees introduce phylogenetic noise. Further, our study also highlights the value of quantifying changes in nodal support across locus subsets of increasing size (but decreasing gene tree resolution). Such detailed analyses can reveal anomalous fluctuations in support at some nodes, suggesting the possibility of model violation. By characterizing the heterogeneity in phylogenetic signal among loci, we can account for uncertainty in gene tree estimation and assess its effect on the consistency of the species tree estimate. We suggest that the evaluation of gene tree resolution should be incorporated in the analysis of empirical phylogenomic data sets. This will ultimately increase our confidence in species tree estimation using summary-coalescent methods and enable us to exploit genomic data for phylogenetic inference

    Morphological dataset

    No full text
    Phenotypic measurements used to infer morphological evolutio
    corecore