40 research outputs found

    Age-dependence of sensorimotor and cerebral electroencephalographic asymmetry in rats subjected to unilateral cerebrovascular stroke

    Get PDF
    Background: The human population mostly affected by stroke is more than 65 years old. This study was designed to meet the recommendation that models of cerebral ischemia in aged animals are more relevant to the clinical setting than young animal models. Until now the majority of the pre-clinical studies examining age effects on stroke outcomes have used rats of old age. Considering the increasing incidence of stroke among younger than old human population, new translational approaches in animal models are needed to match the rejuvenation of stroke. A better knowledge of alterations in stroke outcomes in middle-aged rats has important preventive and management implications providing clues for future investigations on effects of various neuroprotective and neurorestorative drugs against cerebrovascular accidents that may occur before late senescence. Methods: We evaluated the impact of transient focal ischemia, induced by intracerebral unilateral infusion of endothelin-1 (Et-1) near the middle cerebral artery of conscious rats, on volume of brain damage and asymmetry in behavioral and electroencephalographic (EEG) output measures in middle-aged (11-12 month-old) rats. Results: We did not find any age-dependent difference in the volume of ischemic brain damage three days after Et-1 infusion. However, age was an important determinant of neurological and EEG outcomes after stroke. Middle-aged ischemic rats had more impaired somatosensory functions of the contralateral part of the body than young ischemic rats and thus, had greater left-right reflex/sensorimotor asymmetry. Interhemispheric EEG asymmetry was more evident in middle-aged than in young ischemic rats, and this could tentatively explain the behavioral asymmetry.Conclusions: With a multiparametric approach, we have validated the endothelin model of ischemia in middle-aged rats. The results provide clues for future studies on mechanisms underlying plasticity after brain damage and motivate investigations of novel neuroprotective strategies against cerebrovascular accidents that may occur before late senescence. © 2013 Moyanova et al.; licensee BioMed Central Ltd

    Abnormal hippocampal melatoninergic system: a potential link between absence epilepsy and depression-like behavior in WAG/Rij rats?

    Get PDF
    Absence epilepsy and depression are comorbid disorders, but the molecular link between the two disorders is unknown. Here, we examined the role of the melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the dark period of the light-dark cycle, in agreement with previous findings. However, neither pinealectomy nor melatonin administration had any effect on SWD incidence, suggesting that the melatoninergic system was not involved in the pathophysiology of absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of WAG/Rij rats as compared to non-epileptic control rats, and this was associated with higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In line with the reduced melatonin levels, cell density was lower in the hippocampus ofWAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats showed an increased depression-like behaviour in the sucrose preference and forced swim tests, as compared to non-epileptic controls. Pinealectomy abolished the difference between the two strains of rats by enhancing depression-like behaviour in non-epileptic controls. Melatonin replacement displayed a significant antidepressant-like effect in bothWAG/Rij and control rats. These findings suggest that a defect of hippocampal melatoninergic system may be one of the mechanisms underlying the depression-like phenotype inWAG/Rij rats and that activation of melatonin receptors might represent a valuable strategy in the treatment of depression associated with absence epilepsy

    Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity

    Get PDF
    Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy

    Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids

    Get PDF
    Objective. The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. Approach. The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. Main results. The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. Significance. The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI

    Genetic deletion of mGlu2 metabotropic glutamate receptors improves the short-term outcome of cerebral transient focal ischemia

    Get PDF
    Abstract We have recently shown that pharmacological blockade of mGlu2 metabotropic glutamate receptors protects vulnerable neurons in the 4-vessel occlusion model of transient global ischemia, whereas receptor activation amplifies neuronal death. This raised the possibility that endogenous activation of mGlu2 receptors contributes to the pathophysiology of ischemic neuronal damage. Here, we examined this possibility using two models of transient focal ischemia: (i) the monofilament model of middle cerebral artery occlusion (MCAO) in mice, and (ii) the model based on intracerebral infusion of endothelin-1 (Et-1) in rats. Following transient MCAO, mGlu2 receptor knockout mice showed a significant reduction in infarct volume and an improved short-term behavioural outcome, as assessed by a neurological disability scale and the “grip test”. Following Et-1 infusion, Grm2 gene mutated Hannover Wistar rats lacking mGlu2 receptors did not show changes in the overall infarct volume as compared to their wild-type counterparts, although they showed a reduced infarct area in the agranular insular cortex. Interestingly, however, mGlu2 receptor-deficient rats performed better than wild-type rats in the adhesive tape test, in which these rats did not show the laterality preference typically observed after focal ischemia. These findings support the hypothesis that activation of mGlu2 receptors is detrimental in the post-ischemic phase, and support the use of mGlu2 receptor antagonists in the experimental treatment of brain ischemia

    The P2 Receptor Antagonist PPADS Supports Recovery from Experimental Stroke In Vivo

    Get PDF
    BACKGROUND: After ischemia of the CNS, extracellular adenosine 5'-triphosphate (ATP) can reach high concentrations due to cell damage and subsequent increase of membrane permeability. ATP may cause cellular degeneration and death, mediated by P2X and P2Y receptors. METHODOLOGY/PRINCIPAL FINDINGS: The effects of inhibition of P2 receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on electrophysiological, functional and morphological alterations in an ischemia model with permanent middle cerebral artery occlusion (MCAO) were investigated up to day 28. Spontaneously hypertensive rats received PPADS or vehicle intracerebroventricularly 15 minutes prior MCAO for up to 7 days. The functional recovery monitored by qEEG was improved by PPADS indicated by an accelerated recovery of ischemia-induced qEEG changes in the delta and alpha frequency bands along with a faster and sustained recovery of motor impairments. Whereas the functional improvements by PPADS were persistent at day 28, the infarct volume measured by magnetic resonance imaging and the amount of TUNEL-positive cells were significantly reduced by PPADS only until day 7. Further, by immunohistochemistry and confocal laser scanning microscopy, we identified both neurons and astrocytes as TUNEL-positive after MCAO. CONCLUSION: The persistent beneficial effect of PPADS on the functional parameters without differences in the late (day 28) infarct size and apoptosis suggests that the early inhibition of P2 receptors might be favourable for the maintenance or early reconstruction of neuronal connectivity in the periinfarct area after ischemic incidents

    The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders

    Get PDF
    Abstract There is emerging evidence of the beneficial role of the melatonin system in a wide range of psychiatric and neurologic disorders, including anxiety, depression, and epilepsy. Although melatoninergic drugs have chronobiotic and antioxidant properties that positively influence circadian rhythm desynchronization and neuroprotection in neurodegenerative disorders, studies examining the use of melatonin for epilepsy's comorbid psychiatric and neurological symptomatology are still limited. Preclinical and clinical findings on the beneficial effects of the melatonin system on anxiety, depression, and epilepsy suggest that melatoninergic compounds might be effective in treating comorbid behavioral complications in epilepsy beyond regulation of a disturbed sleep-wake cycle

    Alterations in the α2 δ ligand, thrombospondin-1, in a rat model of spontaneous absence epilepsy and in patients with idiopathic/genetic generalized epilepsies

    Get PDF
    Objectives Thrombospondins, which are known to interact with the α2δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). Methods We measured the transcripts of thrombospondin-1 and α2δ subunit, and protein levels of α2δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. Results Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. Significance These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs

    Abnormal Hippocampal Melatoninergic System: A Potential Link between Absence Epilepsy and Depression-Like Behavior in WAG/Rij Rats?

    No full text
    Absence epilepsy and depression are comorbid disorders, but the molecular link between the two disorders is unknown. Here, we examined the role of the melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the dark period of the light-dark cycle, in agreement with previous findings. However, neither pinealectomy nor melatonin administration had any effect on SWD incidence, suggesting that the melatoninergic system was not involved in the pathophysiology of absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of WAG/Rij rats as compared to non-epileptic control rats, and this was associated with higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In line with the reduced melatonin levels, cell density was lower in the hippocampus of WAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats showed an increased depression-like behaviour in the sucrose preference and forced swim tests, as compared to non-epileptic controls. Pinealectomy abolished the difference between the two strains of rats by enhancing depression-like behaviour in non-epileptic controls. Melatonin replacement displayed a significant antidepressant-like effect in both WAG/Rij and control rats. These findings suggest that a defect of hippocampal melatoninergic system may be one of the mechanisms underlying the depression-like phenotype in WAG/Rij rats and that activation of melatonin receptors might represent a valuable strategy in the treatment of depression associated with absence epilepsy
    corecore