1,133 research outputs found

    MECHANISTIC STUDY OF A RUTHENIUM HYDRIDE COMPLEX OF TYPE [RuH(CO)(N-N)(PR3)2]+ AS CATALYST PRECURSOR FOR THE HYDROFORMYLATION REACTION OF 1-HEXENE

    Get PDF
    Indexación: Web of Science; Scopus; Scielo.The catalytic activity of systems of type [RuH(CO)(N-N)(PR3)(2)](+) was evaluated in the hydroformylation reaction of 1-hexene. The observed activity is explained through a reaction mechanism on the basis of the quantum theory. The mechanism included total energy calculations for each of the intermediaries of the elemental steps considered in the catalytic cycle. The deactivation of the catalyst precursors takes place via dissociation of the polypyridine ligand and the subsequent formation of thermodynamically stable species, such as RuH(CO)(3)(PPh3)(2) and RuH3(CO)(PPh3)(2), which interrupt the catalytic cycle. In addition, the theoretical study allows to explain the observed regioselectivity which is defined in two steps: (a) the hydride migration reaction with an anti-Markovnikov orientation to produce the alkyl-linear-complex (3.1a), which is more stable by 19.4 kJ/mol than the Markovnikov orientation (alkyl-branched-complex) (3.1b); (b) the carbon monoxide insertion step generates the carbonyl alkyl-linear specie (4.1a) which is more stable by 9.5 kJ/mol than the alternative species (4.1b), determining the preferred formation of heptanal in the hydroformylation of 1-hexene. Palabras clavehttp://ref.scielo.org/db4yc

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys

    Full text link
    The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refrigeration by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.Comment: 12 pages, 4 figures, to appear in Nature Materials (online published, 15 May 2005

    Stable Photosymbiotic Relationship under CO2-Induced Acidification in the Acoel Worm Symsagittifera Roscoffensis

    Get PDF
    As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding)

    Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver

    Get PDF
    Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression

    Get PDF
    Conjugated linoleic acid (CLA) can activate (in vitro) the nuclear transcription factors known as the peroxisome proliferators activated receptors (PPAR). CLA was fed at 11 g CLA/kg of feed for 45d to castrated male pigs (barrows) to better understand long term effects of PPAR activation in vivo. The barrows fed CLA had lean muscle increased by 3.5% and overall fat reduced by 9.2% but intramuscular fat (IMF %) was increased by 14% (P < 0.05). To measure the effect of long term feeding of CLA on porcine muscle gene expression, a semi-quantitative RT-PCR method was developed using cDNA normalized against the housekeeping genes cyclophilin and β-actin. This method does not require radioactivity or expensive PCR instruments with real-time fluorescent detection. PPARγ and the PPAR responsive gene AFABP but not PPARα were significantly increased (P < 0.05) in the CLA fed pig’s muscle. PPARα and PPARγ were also quantitatively tested for large differences in gene expression by western blot analysis but no significant difference was detected at this level. Although large differences in gene expression of the PPAR transcriptional factors could not be confirmed by western blotting techniques. The increased expression of AFABP gene, which is responsive to PPAR transcriptional factors, confirmed that dietary CLA can induce a detectable increase in basal PPAR transcriptional activity in the live animal

    Vault changes after cyclopentolate instillation in eyes with posterior chamber phakic intraocular lens

    Get PDF
    Posterior chamber phakic intraocular lens (pIOL) implantation is a common option for correcting moderate-to-high ocular refractive defects. Because this pIOL is implanted on ciliary sulcus, the distance between the back surface of the pIOL and the anterior surface of the crystalline lens, that it is known as vault, should be measured in different conditions to ensure the technique's safety. Cyclopentolate is a drug that dilates the pupil and relaxes accommodation (cycloplegia). It is often used for different ocular examinations and for other medical purposes. However, there is no evidence of the effect of this drug on vault. This study quantified central vault changes associated with cyclopentolate instillation. We measured the vault under normal conditions (pre-cycloplegic instillation) and after instilling cyclopentolate on 39 eyes of 39 patients with implanted pIOL. Our results suggest that cyclopentolate instillation may induce changes to vault in eyes with implanted pIOL. These changes seem safe and are mainly associated with vault under normal conditions, but also with anterior chamber depth, pupillary diameter and pIOL size.- European Fund for Regional Development (FEDER) through the COMPETE Program and the Portuguese Foundation for Science and Technology (FCT) provided financial support in the framework of projects PTDC/SAU-BEB/098391/2008, PTDC/SAU-BEB/098392/2008 and the Strategic Project PEST-C/FIS/UI607/2011

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36
    corecore