39 research outputs found

    Subjective vision assessment in companion dogs using dogVLQ demonstrates age-associated visual dysfunction

    Get PDF
    IntroductionDim light vision as assessed by proxy and clinical tools is commonly impaired in older humans and impacts quality of life. Although proxy visual assessment tools have been developed for dogs, it is unclear if they are sensitive enough to detect subtle visual dysfunction in older dogs. We sought to determine if a newly designed proxy visual function questionnaire could detect age-associated differences in visual behaviors in varying lighting conditions in dogs.MethodsA 27-item questionnaire (the dog variable lighting questionnaire, dogVLQ) was designed to assess visual behavior in dogs in different lighting settings. We conducted the dogVLQ, a previously validated visual function questionnaire the dog vision impairment score and performed light- and dark-adapted electroretinography (ERG) on a subset of dogs. Questionnaire scores were analyzed for dog age associations using correlation analysis.ResultsQuestionnaire responses from 235 dog owners were obtained (122 female, 112 male dogs), 79 of which underwent ERG (43 female, 36 male dogs). Bright light visual behavior was significantly associated with light-adapted bright flash ERG amplitudes, visual behavior in near darkness was associated with dark-adapted ERG amplitudes. The dogVLQ identified worse vision in older dogs in bright light, dim light, and darkness; predicted onset was younger for vision in near darkness. Older dogs had more difficulty navigating transitions between lighting conditions.DiscussionSubjective dog owner assessment of visual function associates with objective measurement of retinal function in dogs and supports reduced vision-mediated behaviors in older dogs

    Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis

    Get PDF
    AbstractIschemia-induced angiogenesis is critical for tissue repair, but aberrant neovascularization in the retina causes severe sight impairment. Nitric oxide (NO) has been implicated in neovascular eye disease because of its pro-angiogenic properties in the retina. Nitric oxide production is inhibited endogenously by asymmetric dimethylarginines (ADMA and L-NMMA) which are metabolized by dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2. The aim of this study was to determine the roles of DDAH1, DDAH2, ADMA and L-NMMA in retinal ischemia-induced angiogenesis. First, DDAH1, DDAH2, ADMA and L-NMMA levels were determined in adult C57BL/6J mice. The results obtained revealed that DDAH1 was twofold increased in the retina compared to the brain and the choroid. DDAH2 expression was approximately 150 fold greater in retinal and 70 fold greater in choroidal tissue compared to brain tissue suggesting an important tissue-specific role for DDAH2 in the retina and choroid. ADMA and L-NMMA levels were similar in the retina and choroid under physiological conditions. Next, characterization of DDAH1+/− and DDAH2−/− deficient mice by in vivo fluorescein angiography, immunohistochemistry and electroretinography revealed normal neurovascular function compared with wildtype control mice. Finally, DDAH1+/− and DDAH2−/− deficient mice were studied in the oxygen-induced retinopathy (OIR) model, a model used to emulate retinal ischemia and neovascularization, and VEGF and ADMA levels were quantified by ELISA and liquid chromatography tandem mass spectrometry. In the OIR model, DDAH1+/− exhibited a similar phenotype compared to wildtype controls. DDAH2 deficiency, in contrast, resulted in elevated retinal ADMA which was associated with attenuated aberrant angiogenesis and improved vascular regeneration in a VEGF independent manner. Taken together this study suggests, that in retinal ischemia, DDAH2 deficiency elevates ADMA, promotes vascular regeneration and protects against aberrant angiogenesis. Therapeutic inhibition of DDAH2 may therefore offer a potential therapeutic strategy to protect sight by promoting retinal vascular regeneration and preventing pathological angiogenesis

    HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.

    Get PDF
    BACKGROUND: Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs) that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR) in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF) and erythropoietin (Epo) by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO. CONCLUSIONS/SIGNIFICANCE: Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation plays a key role in regulating the response of Müller glia to hypoxia

    The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice

    Get PDF
    Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition (EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover, fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1 and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such as proliferative vitroretinopathy and atrophic age-related macular degeneration

    Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa

    Get PDF
    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of mi- crobial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment

    Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific

    Get PDF
    The potential for siderophore mutants of Pseudomonas aeruginosa to attenuate virulence during infection, and the possibility of exploiting this for clinical ends, have attracted much discussion. This has largely been based on the results of in vitro experiments conducted in iron-limited growth medium, in which siderophore mutants act as social ‘cheats:’ increasing in frequency at the expense of the wild type to result in low-productivity, low-virulence populations dominated by mutants. We show that insights from in vitro experiments cannot necessarily be transferred to infection contexts. First, most published experiments use an undefined siderophore mutant. Whole-genome sequencing of this strain revealed a range of mutations affecting phenotypes other than siderophore production. Second, iron-limited medium provides a very different environment from that encountered in chronic infections. We conducted cheating assays using defined siderophore deletion mutants, in conditions designed to model infected fluids and tissue in cystic fibrosis lung infection and non-healing wounds. Depending on the environment, siderophore loss led to cheating, simple fitness defects, or no fitness effect at all. Our results show that it is crucial to develop defined in vitro models in order to predict whether siderophores are social, cheatable and suitable for clinical exploitation in specific infection contexts

    CIL:38802, Mus musculus, glial cell, astrocyte, retinal cell. In Cell Image Library

    No full text

    Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa

    No full text
    Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A) gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29–44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies
    corecore