27 research outputs found

    L'Espagne - Catalogne et Castille - "Pays estraing" de Gaucelm Faidit

    Get PDF

    A common polymorphism in NR1H2 (LXRbeta) is associated with preeclampsia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preeclampsia is a frequent complication of pregnancy and a leading cause of perinatal mortality. Both genetic and environmental risk factors have been identified. Lipid metabolism, particularly cholesterol metabolism, is associated with this disease. Liver X receptors alpha (NR1H3, also known as LXRalpha) and beta (NR1H2, also known as LXRbeta) play a key role in lipid metabolism. They belong to the nuclear receptor superfamily and are activated by cholesterol derivatives. They have been implicated in preeclampsia because they modulate trophoblast invasion and regulate the expression of the endoglin (CD105) gene, a marker of preeclampsia. The aim of this study was to investigate associations between the <it>NR1H3 </it>and <it>NR1H2 </it>genes and preeclampsia.</p> <p>Methods</p> <p>We assessed associations between single nucleotide polymorphisms of <it>NR1H3 </it>(rs2279238 and rs7120118) and <it>NR1H2 </it>(rs35463555 and rs2695121) and the disease in 155 individuals with preeclampsia and 305 controls. Genotypes were determined by high-resolution melting analysis. We then used a logistic regression model to analyze the different alleles and genotypes for those polymorphisms as a function of case/control status.</p> <p>Results</p> <p>We found no association between <it>NR1H3 </it>SNPs and the disease, but the <it>NR1H2 </it>polymorphism rs2695121 was found to be strongly associated with preeclampsia (genotype C/C: adjusted odds ratio, 2.05; 95% CI, 1.04-4.05; <it>p </it>= 0.039 and genotype T/C: adjusted odds ratio, 1.85; 95% CI, 1.01-3.42; <it>p </it>= 0.049).</p> <p>Conclusions</p> <p>This study provides the first evidence of an association between the <it>NR1H2 </it>gene and preeclampsia, adding to our understanding of the links between cholesterol metabolism and this disease.</p

    Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.

    Get PDF
    International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice

    Carta manuscrita de Jean Mouzat a Bernard Lesfargues

    No full text
    Jean Mouzart elogia l'obra de Bernard Lesfargues

    Etude du rôle des récepteurs nucléaires des oxystérols LXR alpha et LXR bêta dans la physiologie de la reproduction chez la souris femelle

    No full text
    Le cholestérol, élément nutritif indispensable mais toxique en excès est naturellement converti en oxystérols. Les LXR (Liver X Receptor) alpha et bêta sont les récepteurs nucléaires des oxystérols ayant un rôle hypocholestérolémiant et contrôlant plusieurs fonctions physiologiques. Notre but a été d'étudier leur rôle dans la reproduction chez la femelle. Dans l'ovaire, l'induction de l'ovulation chez des souris lxralphabêta provoque une hyperstimulation ovarienne (OHSS), caractérisée par une augmentation de la masse des troubles vasculaires et de la sensibilité hormonale. Les LXRs contrôlent de plus l'oestradiolémie. Au niveau utérin, nous montrons un rôle spécifique de LXR bêta. Les souris lxrbêta présenrent une séquestration anormale d'esters de cholestérol dans les myocytes associée à un défaut de contractilité utérine. Cette étude montre l'importance des LXRs dans la reproduction chez la femelle et permettra de comprendre le lien entre déséquilibre alimentaire et troubles de la fertilitéCLERMONT FD-BCIU Sci.et Tech. (630142101) / SudocSudocFranceF

    Estrogens repress PGC1-alpha expression in the uterus

    No full text
    International audiencePGC-1 alpha is a transcriptional coactivator that is highly involved in several aspects of regulation of metabolism, including mitochondrial biogenesis and activity. Using several in vivo models, we here report that the expression of PGC-1 alpha is repressed by estrogens in the mouse specifically in the uterus. In the absence of estrogens, expression of PGC-1 alpha target genes involved in mitochondrial activity is activated, but not mitochondrial biogenesis. Regulation of PGC-1 alpha expression by estrogens also occurs in Ishikawa human uterine cells at the promoter level and involve modulation of c-jun expression. (C) 2010 Elsevier Ireland Ltd. All rights reserved
    corecore