196 research outputs found

    Determinantes mineralógicos e paragenéticos nas tipologias de minérios e relações teor/tonelagem em pegmatitos do N de Portugal

    Get PDF

    Aerobic biological treatment of wastewaters containing dichloromethane

    Get PDF
    BACKGROUND: Volatilization has been advanced as one of the predominant phenomena contributing to volatile organic carbon emissions from wastewater treatment plants (WWTPs). In this study, strategies for minimizing such air stripping losses when treating a liquid stream containing dichloromethane (DCM), aiming at decreasing the overall emission inventory from WWTPs, were investigated. RESULTS: System R1, consisting of a continuous flow stirred tank reactor (CSTR) treating a liquid stream containing DCM at a concentration of 12 mmol dm−3 presented a biodegradation efficiency (BE) of 68%, based upon chloride release, with 10% of measurable losses, mainly due to volatilization, and 22% of unmeasurable losses. System R2 introduced operational designs aiming at decreasing DCM volatilization. In Experiment R2.1, a biotrickling filter, through which the air stripped from the CSTR was driven, was introduced leading to a reduction from 10% to 7% on the measurable losses. In Experiment R2.2, the air stripped from the CSTR was recirculated at a flow rate of 2.4 dm3 h−1 through the reactormedium before entering the biotrickling filter. The BE was improved from 69% to 82% and the losses associated with air stripping were successfully reduced to 2%. The proposed design, including air recirculation and the biotrickling filter, increased the ratio between the biodegradation rate and the volatilization rate from 7 to 41. CONCLUSIONS: Recirculation of the gaseous effluent through the reactor medium, which allowed for higher residence time within the bioreactor, was shown to be a successful strategy for improving the treatment process, thus minimizing DCM volatilization losses

    A multimodal stimulation cell culture bioreactor for tissue engineering: A numerical modelling approach

    Get PDF
    This research was funded by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the following Projects: UIDP/04044/2020, PAMI—ROTEIRO/0328/2013 (No 022158) and Stimuli2BioScaffold— Stimuli modelling for BioScaffolds: from numerical modelling to in vitro tests co-financed by COMPETE2020 under the PT2020 programme, and supported by FCT (02/SAICT/2017). Ref. POCI-01-0145-FEDER-032554; Bone2Move—Development of “in vivo” experimental techniques and modeling methodologies for the evaluation of 4D scaffolds on bone defect in sheep model: an integrative research approach co-financed by COMPETE2020 under the PT2020 programme, and supported by FCT (02/SAICT/2017), Project nº 31146; MATIS—MATERIALS AND SUSTAINABLE INDUSTRIAL TECHNOLOGIES (CENTRO-01-0145-FEDER-000014-3362); Instituto de Biofísica e Engenharia Biomédica (IBEB) is supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, under Grant n UIDB/00645/2020. Also supported by UID/BIO/04565/2020.The use of digital twins in tissue engineering (TE) applications is of paramount importance to reduce the number of in vitro and in vivo tests. To pursue this aim, a novel multimodal bioreactor is developed, combining 3D design with numerical stimulation. This approach will facilitate the reproducibility between studies and the platforms optimisation (physical and digital) to enhance TE. The new bioreactor was specifically designed to be additive manufactured, which could not be reproduced with conventional techniques. Specifically, the design suggested allows the application of dual stimulation (electrical and mechanical) of a scaffold cell culture. For the selection of the most appropriate material for bioreactor manufacturing several materials were assessed for their cytotoxicity. Numerical modelling methods were then applied to the new bioreactor using one of the most appropriate material (Polyethylene Terephthalate Glycol-modified (PETG)) to find the optimal stimulation input parameters for bone TE based on two reported in vitro studies.info:eu-repo/semantics/publishedVersio

    Alternative laronidase dose regimen for patients with mucopolysaccharidosis I: a multinational, retrospective, chart review case series

    Get PDF
    Background: Enzyme replacement therapy (ERT) with laronidase (recombinant human alpha-L-iduronidase, Aldurazyme (R)) is indicated for non-neurological signs and symptoms of mucopolysaccharidosis type I (MPS I). The approved laronidase dose regimen is weekly infusions of 0.58mg/kg, however, patients and caregivers may have difficulty complying with the weekly regimen. We examined clinical outcomes, tolerability, compliance, and satisfaction in a series of patients who switched to every other week infusions. Methods: This multinational, retrospective, chart review case series analyzed data from 20 patients who had undergone ERT with laronidase 0.58mg/kg weekly for more than one year, and who then switched to 1.2mg/kg every other week. Results: The majority of patients had attenuated MPS I phenotypes (9 with Hurler-Scheie and 8 with Scheie syndromes) and 3 patients had severe MPS I (Hurler syndrome). Most patients presented with organomegaly (17/ 20), umbilical and/or inguinal hernia (16/20), cardiac abnormalities (17/20), musculoskeletal abnormalities (19/20), and neurological and/or developmental deficits (15/20). Following laronidase treatment, signs stabilized or improved. No deterioration or reversal of clinical outcome was noted in any patient who switched from the weekly dose of 0.58mg.kg to 1.2mg/kg every other week. There were no safety issues during the duration of every other week dosing. Patient compliance and satisfaction with the dosing regimen were greater with every other week dosing than weekly dosing. Conclusions: An alternative dose regimen of 1.2mg/kg laronidase every other week was well tolerated and clinically similar to the standard dose for patients who were stabilized with weekly 0.58 mg/kg for one year or more. When an individualized approach to laronidase therapy is necessary, every other week dosing may be an alternative for patients with difficulty receiving weekly infusions.Sanofi GenzymeSanofi Genzyme, Cambridge, MA, USAFiocruz MS, Inst Nacl Saude Mulher Crianca & Adolescente Fern, BR-21045900 Rio De Janeiro, BrazilUniv Fed Bahia, Dept Pediat, Serv Genet Med, Salvador, BA, BrazilHosp Clin Alegre, Med Genet Serv, Porto Alegre, RS, BrazilComenius Univ, Childrens Hosp, Dept Pediat 2, Bratislava, SlovakiaWestmead Hosp, Dept Med Genet, Sydney, NSW, AustraliaUniv Sydney, Sydney, NSW 2006, AustraliaUniv Fed Sao Paulo, Dept Pediat, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Pediat, Sao Paulo, BrazilWeb of Scienc

    Velhas tardes de domingo (Notas sobre Domingão do Faustão e Programa Silvio Santos)

    Get PDF
    Nas tardes de domingo,as duas maiores redes de televisão brasileiras apresentam programas de auditório: a Rede Globo de Televisão transmite Domingão do Faustão e o Sistema Brasileiro de Televisão veicula o Programa Silvio Santos. Este estudo traça um breve histórico desses dois programas, descreve rapidamente suas estruturas, e, a partir daí, delineia hipóteses sobre possíveis funções desses produtos televisivos junto aos espectadores.

    Inclusión laboral para personas con discapacidad

    Get PDF
    Expone en una primera parte las reflexiones en los marcos legislativos y curriculares en torno al ámbito laboral de las personas con discapacidad y, en una segunda parte las recomendaciones finales que realizó el grupo de expertos reunidos en la mesa de trabajo sobre la inclusión laboral de las personas con discapacidad, los días 12, 13 y 14 de noviembre de 2008, en la ciudad de Lima, Perú, con la intención de influir positivamente en el reto de hacer efectivo el derecho al trabajo de estas personas

    Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis

    Get PDF
    Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Å, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore