107 research outputs found
Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region
This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 116 (2011): B12318, doi:10.1029/2011JB008497.We evaluate the long-term seismic activity of the North-American/Caribbean plate boundary from 500 years of historical earthquake damage reports. The 2010 Haiti earthquakes and other earthquakes were used to derive regional attenuation relationships between earthquake intensity, magnitude, and distance from the reported damage to the epicenter, for Hispaniola and for Puerto Rico and the Virgin Islands. The attenuation relationship for Hispaniola earthquakes and northern Lesser Antilles earthquakes is similar to that for California earthquakes, indicating a relatively rapid attenuation of damage intensity with distance. Intensities in Puerto Rico and the Virgin Islands decrease less rapidly with distance. We use the intensity-magnitude relationships to systematically search for the location and intensity magnitude MI which best fit all the reported damage for historical earthquakes. Many events occurred in the 20th-century along the plate-boundary segment from central Hispaniola to the NW tip of Puerto Rico, but earlier events from this segment were not identified. The remaining plate boundary to the east to Guadeloupe is probably not associated with M > 8 historical subduction-zone earthquakes. The May 2, 1787 earthquake, previously assigned an M 8–8.25, is probably only MI 6.9 and could be located north, west or SW of Puerto Rico. An MI 6.9 earthquake on July 11, 1785 was probably located north or east of the Virgin Islands. We located MI < 8 historical earthquakes on April 5, 1690, February 8, 1843, and October 8, 1974 in the northern Lesser Antilles within the arc. We speculate that the December 2, 1562 (MI 7.7) and May 7, 1842 (MI 7.6) earthquakes ruptured the Septentrional Fault in northern Hispaniola. If so, the recurrence interval on the central Septentrional Fault is ∼300 years, and only 170 years has elapsed since the last event. The recurrence interval of large earthquakes along the Hispaniola subduction segment is likely longer than the historical record. Intra-arc M ≥ 7.0 earthquakes may occur every 75–100 years in the 410-km-long segment between the Virgin Islands and Guadeloupe
Noninvasive Diagnosis of Visceral Leishmaniasis:Development and Evaluation of Two Urine-Based Immunoassays for Detection of Leishmania donovani Infection in India
Visceral leishmaniasis (VL), one of the most prevalent parasitic diseasesin the developing world causes serious health concerns. Post kala-azar dermal leishmaniasis (PKDL) is a skin disease which occurs after treatment as a sequel to VL. Parasitological diagnosis involves invasive tissue aspiration which is tedious and painful. Commercially available immunochromatographic rapid diagnostic test such as rK39-RDT is used for field diagnosis of VL, detects antibodiesin serum samples. Urine sample is however, much easier in
collection,storage and handling than serum and would be a better alternative where collection of tissue aspirate or blood is impractical. In this study, we have developed and evaluated the performance of two urine-based diagnostic assays, ELISA and dipstick test, and
compared the results with serologicalrK39-RDT. Our study shows the capability of urinebased tests in detecting anti-Leishmania antibodies effectively for both VL and PKDL diagnosis. The ability of dipstick test to demonstrate negative results after six months in
90% of the VL cases after treatment could be useful as a test of clinical cure. Urine-based
tests can therefore replace the need for invasive practices and ensure better diagnosi
A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies
Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
Physics-Based Earthquake Ground Shaking Scenarios in Large Urban Areas
With the ongoing progress of computing power made available not only by large supercomputer facilities but also by relatively common workstations and desktops, physics-based source-to-site 3D numerical simulations of seismic ground motion will likely become the leading and most reliable tool to construct ground shaking scenarios from future earthquakes. This paper aims at providing an overview of recent progress on this subject, by taking advantage of the experience gained during a recent research contract between Politecnico di Milano, Italy, and Munich RE, Germany, with the objective to construct ground shaking scenarios from hypothetical earthquakes in large urban areas worldwide. Within this contract, the SPEED computer code was developed, based on a spectral element formulation enhanced by the Discontinuous Galerkin approach to treat non-conforming meshes. After illustrating the SPEED code, different case studies are overviewed, while the construction of shaking scenarios in the Po river Plain, Italy, is considered in more detail. Referring, in fact, to this case study, the comparison with strong motion records allows one to derive some interesting considerations on the pros and on the present limitations of such approach
- …