17 research outputs found

    COMPOSITION AND OCCURRENCE OF THE GRANDISPORA MACULOSA ZONAL ASSEMBLAGE (MISSISSIPPIAN) IN THE SUBSURFACE OF THE CARNARVON BASIN AND THE COOLCALALAYA SUB-BASIN OF WESTERN AUSTRALIA, AND ITS GONDWANAN DISTRIBUTION

    Get PDF
    The Grandispora maculosa miospore assemblage – initially described in 1968 from Middle-Late Mississippian strata of New South Wales (eastern Australia) – is well represented in samples examined herein from 10 Western Australian subsurface sections located in the northern Perth Basin (Coolcalalaya Sub-basin) and, to its immediate north, in several sub-basins of the southern and northern sectors of the Carnarvon Basin. Of particular stratigraphic-correlative importance is the presence of the eponymous G. maculosa together with, inter alia, Reticulatisporites magnidictyus, Verrucosisporites quasigobbettii, V. gregatus, Apiculiretusispora tersa, Raistrickia accinta, R. radiosa, Foveosporites pellucidus, and Cordylosporites asperidictyus. Four species are newly described herein: Apiculatasporites spiculatus, Dibolisporites sejunctus, Raistrickia corymbiata, and Vallatisporites valentulus. Published accounts from elsewhere in Gondwana collectively signify the widespread dissemination of the G. maculosa palynoflora, particularly through northern and western regions of the supercontinent, thus affording an effective means of intra-Gondwanan stratal correlation. Limited absolute dating and stratigraphic-successional considerations across Gondwana indicate that the age of the G. maculosa Assemblage can be bracketed within the middle Visean-early Serpukhovian of the Middle-Late Mississippian. This age is supported by the complete absence of bilaterally symmetrical, non-striate, saccate pollen grains, produced by walchian conifers, which were introduced globally (including in Australia) and near-synchronously late in the Serpukhovian. Cryptogamic land plants (ferns, articulates, lycophytes) are the inferred source of the palynoflora

    K-Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia

    No full text
    Woodleigh is a recently discovered impact structure with a diameter of 120 km, and thereby represents the third largest proven Phanerozoic impact structure known after Morocweng and Chicxulub. K-Ar isotopic studies of fine-grained authigenic illitic clay minerals (< 2 μm), considered to be impact-induced hydrothermal alteration products, indicate a Late Devonian (359 ± 4 Ma) age for the impact. Other evidence reported for Late Devonian extraterrestrial impacts include the strong iridium anomaly in the Canning Basin, Western Australia, and microtektites and elemental anomalies (including iridium) in South China. Given the large diameter of the Woodleigh impact structure and its relative proximity to iridium anomalies also of Late Devonian age in eastern Gondwana basins, environmental effects of the Woodleigh impact event are a likely contributor to a biotic crisis in the Late Devonian

    Clay mineralogical, geochemical and isotopic tracing of the evolution of the Woodleigh impact structure, Southern Carnarvon Basin, Western Australia

    No full text
    Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions ( 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession

    The greening of Western Australian landscapes: the Phanerozoic plant record

    No full text
    Western Australian terrestrial floras first appeared in the Middle Ordovician (c. 460 Ma) and developed Gondwanan affinities in the Permian. During the Mesozoic, these floras transitioned to acquire a distinctly austral character in response to further changes in the continent’s palaeolatitude and its increasing isolation from other parts of Gondwana. This synthesis of landscape evolution is based on palaeobotanical and palynological evidence mostly assembled during the last 60 years. The composition of the plant communities and the structure of vegetation changed markedly through the Phanerozoic. The Middle Ordovician –Middle Devonian was characterised by diminutive vegetation in low-diversity communities. An increase in plant size is inferred from the Devonian record, particularly from that of the Late Devonian when a significant part of the flora was arborescent. Changes in plant growth-forms accompanied a major expansion of vegetation cover to episodically or permanently flooded lowland settings and, from the latest Mississippian onwards, to dry hinterland environments. Wetter conditions during the Permian yielded waterlogged environments with complex swamp communities dominated by Glossopteris. In response to the Permian–Triassic extinction event, a transitional vegetation characterised by herbaceous lycopsids became dominant but was largely replaced by the Middle Triassic with seed ferns and shrubs or trees attributed to Dicroidium. Another floristic turnover at the Triassic–Jurassic boundary introduced precursors of Australia’s modern vegetation and other southern hemisphere regions. Most importantly, flowering plants gained ascendancy during the Late Cretaceous. Characteristics of the state’s modern vegetation, such as sclerophylly and xeromorphy, arose during the Late Cretaceous and Paleogene. The vegetation progressively developed its present-day structure and composition in response to the increasing aridity during the Neogene–Quaternary.Also funded by US National Science Foundation (project #1636625); Spanish AEI/FEDER, UE Grant CGL2017-84419; RJC is funded by the ARC via Greg Jordan (University of Tasmania) and Bob Hill (University of Adelaide); LAM and CLM appreciate the support of Vimy Resources Ltd.</p

    Late Artinskian–Early Kungurian (Early Permian) warming and maximum marine flooding in the East Gondwana interior rift, Timor and Western Australia, and comparisons across East Gondwana

    No full text
    © 2016Substantial new information is presented on upper Artinskian–Kungurian deposits in Timor-Leste and in the Canning, Southern Carnarvon and northern Perth basins of Western Australia. These basins, situated between about 35°S and 55°S palaeolatitude, formed part of the East Gondwana interior rift, a precursor to the rift that 100 my later formed the Indian Ocean in this region. Timor lay near the main axis of the East Gondwana interior rift, whereas the Western Australian basins were marginal splays from the rift axis. The main depocentres developed as a result of faulting that was initiated during the Late Pennsylvanian. Detailed lithostratigraphic and biostratigraphic analyses have been made on the newly recognized Bua-bai limestone and the type Cribas Group in Timor, the Noonkanbah Formation in the Canning Basin, the Byro Group in the Merlinleigh Sub-basin of the Southern Carnarvon Basin, and the Carynginia Formation in the northern Perth Basin. In Timor the succession, which is highly disrupted by faulting, was deposited under open-marine conditions probably in a shelf–basin setting. Restricted, very shallow-water seas flooded the Canning Basin and the Merlinleigh–Byro–Irwin sub-basins of the Southern Carnarvon and northern Perth basins and had highly variable oxygen levels and salinities typical of estuarine environments. A similar pattern of warming and bathymetric change is recognized in all studied basins. During the early part of the late Artinskian cool conditions prevailed, with water temperatures 0–4 °C forming sea ice in the Merlinleigh–Byro–Irwin rift. Rapid warming during the latter part of the late Artinskian was accompanied by maximum marine flooding close to the Artinskian–Kungurian boundary. Climatic and bathymetric conditions then allowed carbonate mounds, with larger fusulines and a variety of algae, to develop in the northern part of the rift system, and Tubiphytes, conodonts, and brachiopods with Tethyan affinities to migrate into the marginal-rift basins despite the generally adverse water quality at these depositional sites. Comparison between the stratigraphic record from the East Gondwana interior rift and coeval records from Lhasa and Sibumasu indicate a similar pattern of climate change during the Carboniferous to end Cisuralian. Similar trends probably are present in Eastern Australia although there is confusion over the correlation of some units

    Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana

    No full text
    Gondwana changed its high latitude location during the late Paleozoic (338–265 Ma), relative to the South Pole, and the style of glaciation evolved from localized alpine glaciers and ice fields to ~30 small ice sheets across the supercontinent. We report the analysis of heavy mineral populations (n = 2217) and the ages of detrital zircons (n = 2920 U-Pb LA-ICPMS results) from Gondwana diamictite deposits from eight landmasses: Africa (5 samples), Antarctica (5), Australia (8), the Ellsworth Mountains terrane (1, Antarctica), the Falkland Islands (2, diamictite plus U-Pb SHRIMP ages on granite clasts), India (1), Madagascar (1), Oman (3), the equatorial Lhasa terrane (2), the equatorial North Qiantang terrane (2) and South America (10). Heavy mineral separations (SEM-WDS analysis) identified one anomaly, pyrope garnets present only in Dwyka Group and Dwyka-equivalent samples suggesting an ultramafic Antarctic source. Statistical analysis of detrital zircon age distributions support the inference of local transport of sediment from many small ice centers with five examples of far-field ice transport (>1000 km; four with ice flow >2000 km), and three from ice fields located along coastal Antarctica. We propose that ice was distributed from five main ice-caps of different ages in southern Gondwana with ice flow away from central Gondwana. We also confirm that the Permo-Carboniferous detrital zircon populations of Euramerica (eolian and fluvial) and Gondwana (ash, detrital-glacial) are not mixed across the equator or seaway and ponder the possibility of a late Paleozoic snowball Earth

    Lad-1/Variant Syndrome Is Caused by Mutations in Fermt3

    No full text
    Leukocyte adhesion deficiency-1/variant (LAD1v) syndrome presents early in life and manifests by infections without pus formation in the presence of a leukocytosis combined with a Glanzmann-type bleeding disorder, resulting from a hematopoietic defect in integrin activation. In 7 consanguineous families, we previously established that this defect was not the result of defective Rap1 activation, as proposed by other investigators. In search of the genetic defect, we carried out homozygosity mapping in 3 of these patients, and a 13-Mb region on chromosome 11 was identified. All 7 LAD1v families share the same haplotype, in which 3 disease-associated sequence variants were identified: a putative splice site mutation in CALDAGGEF1 ( encoding an exchange factor for Rap1), an intronic 1.8-kb deletion in NRXN2, and a premature stop codon (p. Arg509X) in FERMT3. Two other LAD1v patients were found to carry different stop codons in FERMT3 (p. Arg573X and p. Trp229X) and lacked the CALDAGGEF1 and NRXN2 mutations, providing convincing evidence that FERMT3 is the gene responsible for LAD1v. FERMT3 encodes kindlin-3 in hematopoietic cells, a protein present together with integrins in focal adhesions. Kindlin-3 protein expression was undetectable in the leukocytes and platelets of all patients tested. These results indicate that the LAD1v syndrome is caused by truncating mutations in FERMT3. (Blood. 2009;113:4740-4746)WoSScopu
    corecore