45 research outputs found

    Microbial contributions to the persistence of coral reefs

    Get PDF
    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems

    Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches

    Get PDF
    Current research highlights the importance of associated microbes in contributing to the functioning, health, and even adaptation of their animal, plant, and fungal hosts. As such, we are witnessing a shift in research that moves away from focusing on the eukaryotic host sensu stricto to research into the complex conglomerate of the host and its associated microorganisms (i.e., microbial eukaryotes, archaea, bacteria, and viruses), the so-called metaorganism, as the biological entity. While recent research supports and encourages the adoption of such an integrative view, it must be understood that microorganisms are not involved in all host processes and not all associated microorganisms are functionally important. As such, our intention here is to provide a critical review and evaluation of perspectives and limitations relevant to studying organisms in a metaorganism framework and the functional toolbox available to do so. We note that marker gene-guided approaches that primarily characterize microbial diversity are a first step in delineating associated microbes but are not sufficient to establish proof of their functional relevance. More sophisticated tools and experiments are necessary to reveal the specific functions of associated microbes. This can be accomplished through the study of metaorganisms in less complex environments, the targeted manipulation of microbial associates, or work at the mechanistic level with the toolbox available in model systems. We conclude that the metaorganism framework is a powerful new concept to help provide answers to longstanding biological questions such as the evolution and ecology of organismal complexity and the importance of organismal symbioses to ecosystem functioning. The intricacy of the metaorganism requires a holistic framework combining reductionist and integrative approaches to resolve metaorganism identities and to disclose the various roles that microorganisms play in the biology of their hosts

    Steinerne Zeugen früher Kulturen /

    No full text

    Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography1

    No full text
    The establishment of host-bacterial colonization during development is a fundamental process influencing the fitness of many organisms, but the factors controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. The starlet sea anemone Nematostella vectensis serves as a cnidarian model organism due to the availability of laboratory cultures and its high tolerance for broad ranges of salinity and temperature. Here, we show that the anemone’s epithelia are colonized by diverse bacterial communities and that the composition of its microbiota is tightly coupled to host development. Environmental variations led to robust adjustments in the microbial composition while still maintaining the ontogenetic core signature. In addition, analysis of bacterial communities of Nematostella polyps from five different populations revealed a strong correlation between host biogeography and bacterial diversity despite years of laboratory culturing. These observed variations in fine-scale community composition following environmental change and for individuals from different geographic origins could represent the microbiome’s contribution to host acclimation and potentially adaptation, respectively and thereby contribute to the maintenance of homeostasis due to environmental changes

    Enhanced Biocatalytic Performance of Bacterial Laccase from Streptomyces sviceus : Application in the Michael Addition Sequence Towards 3-Arylated 4-Oxochromanes

    No full text
    A fast and efficient laccase-catalysed oxidation/Michael addition sequence is performed using the bacterial laccase Ssl 1 from Streptomyces sviceus under basic conditions to provide a new class of 3-arylated 4-oxochromanes. This approach has advantages compared to previous biocatalytic arylation protocols that use fungal laccases under slightly acidic conditions to allow a significant decrease in reaction time with improved yields and maintained regio- and diastereoselectivity. Furthermore, a successful diastereoselective, consecutive one-pot approach with the use of a hydrogenation flow system combined with the laccase-catalysed arylation was performed. Finally, the general utility of this enzyme as a superior biocatalyst for Michael additions using several nucleophiles was demonstrated. The corresponding starting material was obtained in a straightforward esterification/hydrogenation process with the latter accomplished by using the flow system

    Reaction Calorimetry in continuous flow mode. A new approach for the thermal characterization of high energetic and fast reactions

    No full text
    A new method for the calorimetric characterization of high-energetic, fast reactions in flow mode has been developed. The use of an engineered flow reactor in combination with a process modelling software allowed the deconvolution of the reaction enthalpy from space-resolved temperature profiles. The new procedure was verified in a comparison with a conventional batch calorimeter and subsequently implemented for the thermal characterization of an organolithium flow process. The information collected for this reaction successfully supported a scale-up to the pilot plant. Overall, the new approach resulted to be superior when compared with established procedures, enabling the generation of precise calorimetric data in an accurate scale-down flow device

    Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra.

    No full text
    The extent to which disturbances in the resident microbiota can compromise an animal's health is poorly understood. Hydra is one of the evolutionary oldest animals with naturally occurring tumors. Here, we found a causal relationship between an environmental spirochete (Turneriella spec.) and tumorigenesis in Hydra. Unexpectedly, virulence of this pathogen requires the presence of Pseudomonas spec., a member of Hydra´s beneficial microbiome indicating that dynamic interactions between a resident bacterium and a pathogen cause tumor formation. The observation points to the crucial role of commensal bacteria in maintaining tissue homeostasis and adds support to the view that microbial community interactions are essential for disease. These findings in an organism that shares deep evolutionary connections with all animals have implications for our understanding of cancer

    Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra

    No full text
    The aging process is considered to be the result of accumulating cellular deterioration in an individual organism over time. It can be affected by the combined influence of genetic, epigenetic, and environmental factors including life-style-associated events. In the non-senescent freshwater polyp Hydra, one of the classical model systems for evolutionary developmental biology and regeneration, transcription factor FoxO modulates both stem cell proliferation and innate immunity. This provides strong support for the role of FoxO as a critical rate-of-aging regulator. However, how environmental factors interact with FoxO remains unknown. Here, we find that deficiency in FoxO signaling in Hydra leads to dysregulation of antimicrobial peptide expression and that FoxO loss-of-function polyps are impaired in selection for bacteria resembling the native microbiome and more susceptible to colonization of foreign bacteria. These findings reveal a key role of FoxO signaling in the communication between host and microbiota and embed the evolutionary conserved longevity factor FoxO into the holobiont concept
    corecore