269 research outputs found

    Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity

    Get PDF
    The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu

    S100A6 Amyloid Fibril Formation Is Calcium-modulated and Enhances Superoxide Dismutase-1 (SOD1) Aggregation

    Get PDF
    S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices HI and HIV. Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca2+ exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca2+ promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca2+ rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca2+. Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function

    Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.

    Get PDF
    Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, highlighting the physicochemical features and the possible pathway of formation of the particulate structure. Our findings provide a novel detailed knowledge of such a general and alternative aggregation pathway for proteins, this being crucial for a basic and broader understanding of the aggregation phenomena.This is the author's accepted manuscript and will be under embargo until the 3rd of September 2015. The final version is published by ACS in The Journal of Physical Chemistry Letters here: http://pubs.acs.org/doi/abs/10.1021/jz501614e

    Elongation of wood fibers combines features of diffuse and tip growth

    Get PDF
    Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces.To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth.We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces.These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth

    Cytotoxicity of albebetin oligomers depends on cross-β-sheet formation

    Get PDF
    AbstractPrefibrillar cytotoxicity was suggested as a common amyloid characteristic. We showed two types of albebetin prefibrillar oligomers are formed during incubation at pH 7.3. Initial round-shaped oligomers consist of 10–15 molecules determined by atomic force microscopy, do not bind thioflavin-T and do not affect viability of granular neurons and SH-SY5Y cells. They are converted into ca. 30–40-mers possessing cross-β-sheet and reducing viability of neuronal cells. Neither monomers nor fibrils possess cytotoxicity. We suggest that oligomeric size is important for stabilising cross-β-sheet core critical for cytotoxicity. As albebetin was used as a carrier-protein for drug delivery, examination of amyloidogenicity is required prior polypeptide biomedical applications

    Cholesterol-containing lipid nanodiscs promote an α-synuclein binding mode that accelerates oligomerization

    Get PDF
    Dysregulation of the biosynthesis of cholesterol and other lipids has been implicated in many neurological diseases, including Parkinson's disease. Misfolding of α-synuclein (α-Syn), the main actor in Parkinson's disease, is associated with changes in a lipid environment. However, the exact molecular mechanisms underlying cholesterol effect on α-Syn binding to lipids as well as α-Syn oligomerization and fibrillation remain elusive, as does the relative importance of cholesterol compared to other factors. We probed the interactions and fibrillation behaviour of α-Syn using styrene–maleic acid nanodiscs, containing zwitterionic and anionic lipid model systems with and without cholesterol. Surface plasmon resonance and thioflavin T fluorescence assays were employed to monitor α-Syn binding, as well as fibrillation in the absence and presence of membrane models. 1H-15N-correlated NMR was used to monitor the fold of α-Syn in response to nanodisc binding, determining individual residue apparent affinities for the nanodisc-contained bilayers. The addition of cholesterol inhibited α-Syn interaction with lipid bilayers and, however, significantly promoted α-Syn fibrillation, with a more than a 20-fold reduction of lag times before fibrillation onset. When α-Syn bilayer interactions were analysed at an individual residue level by solution-state NMR, we observed two different effects of cholesterol. In nanodiscs made of DOPC, the addition of cholesterol modulated the NAC part of α-Syn, leading to stronger interaction of this region with the lipid bilayer. In contrast, in the nanodiscs comprising DOPC, DOPE and DOPG, the NAC part was mostly unaffected by the presence of cholesterol, while the binding of the N and the C termini was both inhibited.publishedVersio

    Nature of water-biochar interface interactions

    Get PDF
    A poplar biochar obtained by an industrial gasification process was saturated with water and analyzed using fast field cycling (FFC) NMR relaxometry in a temperature range between 299 and 353 K. Results revealed that the longitudinal relaxation rate increased with the increment of the temperature. This behavior was consistent with that already observed for paramagnetic inorganic porous media for which two different relaxation mechanisms can be accounted for: outer- and inner-sphere mechanisms. The former is due to water diffusing from the closest approach distance to infinity, whereas the second is due to water interacting by nonconventional H-bonds to the porous surface of the solid material. In particular, the inner-sphere relaxation appeared to be predominant in the water-saturated biochar used in the present study. This study represents a fundamental first step for the full comprehension of the role played by biochar in the draining properties of biochar-amended soils

    Pro-inflammatory S100A9 protein as a robust biomarker differentiating early stages of cognitive impairment in Alzheimer’s Diseased

    Get PDF
    Pro-inflammatory protein S100A9 was established as a biomarker of dementia progression and compared with others such as Aβ1−42and tau-proteins. CSF samples from 104 stringently diagnosed individuals divided into five subgroups were analyzed, including nondemented controls, stable mild cognitive impairment (SMCI), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), Alzheimer’s disease (AD), and vascular dementia (VaD) patients. ELISA, dot-blotting, and electrochemical impedance spectroscopy were used as research methods. The S100A9 and Aβ1−42 levels correlated with each other: their CSF content decreased already at the SMCI stage and declined further under MCIAD, AD, and VaD conditions. Immunohistochemical analysis also revealed involvement of both Aβ1−42 and S100A9 in the amyloid-neuroinflammatory cascade already during SMCI. Tau proteins were not yet altered in SMCI; however their contents increased during MCI-AD and AD, diagnosing later dementia stages. Thus, four biomarkers together, reflecting different underlying pathological causes, can accurately differentiate dementia progression and also distinguish AD from Va

    Antibodies to glutamate reversed the amnesic effects of proinflammatory S100A9 protein fibrils in aged C57Bl/6 mice

    Get PDF
    Chronic intranasal administration of fibrillar structures of proinflammatory S100A9 protein impaired passive avoidance learning in old C57Bl/6 mice. Combined treatment with S100A9 fibrils and antibodies to glutamate was followed by an increase in horizontal locomotor activity of animals in the open-field test and did not disturb spatial memory
    corecore