2,039 research outputs found

    MAD@VLT: Deep into the Madding Crowd of Omega Centauri

    Full text link
    We present deep and accurate Near-Infrared (NIR) photometry of the Galactic Globular Cluster (GC) Omega Cen. Data were collected using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) on VLT (ESO). The unprecedented quality of the images provided the opportunity to perform accurate photometry in the central crowded regions. Preliminary results indicate that the spread in age among the different stellar populations in Omega Cen is limited.Comment: 6 pages, 3 figures, to appear in the Springer Astrophysics and Space Science Proceedings, "Science with the VLT in the ELT era", ed. A. Moorwoo

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    A Novel Satellite Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Alerts

    Get PDF
    The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The proposed data processing chain is based on a novel flight segment architecture that moves EO data processing elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below one minute in realistic scenarios. The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper presents the proposed architecture, its hardware realization for the ground testing in a representative environment and its performance. The architecture’s performance is evaluated considering two different user scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to the end user with a latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO products and alerts to the end user globally, with latency lower than one-point-five minutes

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Precision measurement of CPCP violation in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps1^{-1}, andΔΓsΓLΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0J/ψπ+πB_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+KK^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure

    First observation and amplitude analysis of the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay

    Get PDF
    The BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay is observed in a data sample corresponding to 3.0 fb13.0~\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(BD+Kπ)=(7.31±0.19±0.22±0.39)×105{\cal B}(B^{-}\to D^{+}K^{-}\pi^{-}) = (7.31 \pm 0.19 \pm 0.22 \pm 0.39) \times 10^{-5} where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-}, respectively. An amplitude analysis of the resonant structure of the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay is used to measure the contributions from quasi-two-body BD0(2400)0KB^{-}\to D_{0}^{*}(2400)^{0}K^{-}, BD2(2460)0KB^{-}\to D_{2}^{*}(2460)^{0}K^{-}, and BDJ(2760)0KB^{-}\to D_{J}^{*}(2760)^{0}K^{-} decays, as well as from nonresonant sources. The DJ(2760)0D_{J}^{*}(2760)^{0} resonance is determined to have spin~1.Comment: 39 pages, 10 figures, submitted to Phys. Rev. D. Updated following erratum 10.1103/PhysRevD.93.11990

    Observation of the Bs0ηηB^0_s\to\eta'\eta' decay

    Get PDF
    The first observation of the Bs0ηηB^0_s\to\eta'\eta' decay is reported. The study is based on a sample of proton-proton collisions corresponding to 3.03.0 fb1{\rm fb^{-1}} of integrated luminosity collected with the LHCb detector. The significance of the signal is 6.46.4 standard deviations. The branching fraction is measured to be [3.31±0.64(stat)±0.28(syst)±0.12(norm)]×105[3.31 \pm 0.64\,{\rm (stat)} \pm 0.28\,{\rm (syst)} \pm 0.12\,{\rm (norm)}]\times10^{-5}, where the third uncertainty comes from the B±ηK±B^{\pm}\to\eta' K^{\pm} branching fraction that is used as a normalisation. In addition, the charge asymmetries of B±ηK±B^{\pm}\to\eta' K^{\pm} and B±ϕK±B^{\pm}\to\phi K^{\pm}, which are control channels, are measured to be (0.2±1.3)%(-0.2 \pm1.3)\% and (+1.7±1.3)%(+1.7\pm1.3)\%, respectively. All results are consistent with theoretical expectations

    Study of BDKπ+πB^{-}\to DK^-\pi^+\pi^- and BDππ+πB^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle γ\gamma

    Get PDF
    We report a study of the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the Kπ±K^{\mp}\pi^{\pm} and CP-even K+KK^+K^- and π+π\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed DK+πD\to K^+\pi^- final state of the BDππ+πB^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay BDKπ+πB^{-}\to DK^-\pi^+\pi^-, with DK+πD\to K^+\pi^-, is also presented. From the observed yields in the BDKπ+πB^-\to DK^-\pi^+\pi^-, BDππ+πB^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be γ=(7419+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of γ\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
    corecore