26 research outputs found

    Factors affecting branch wound occlusion and associated decay following pruning – a case study with wild cherry (Prunus avium L.)

    Get PDF
    Pruning wild cherry (Prunus avium L.) is a common silvicultural practice carried out to produce valuable timber at a veneer wood quality. Sub-optimal pruning treatments can permit un-occluded pruning wounds to develop devaluing decay. The aim of this study is to determine relevant branch, tree and pruning characteristics affecting the occlusion process of pruning wounds. Important factors influencing occlusion time for an optimised pruning treatment for valuable timber production utilising wild cherry are derived. 85 artificially pruned branches originating from ten wild cherry trees were retrospectively analysed. Branch stub length, branch diameter and radial stem increment during occlusion were found to be significant predictors for occlusion time. From the results it could be concluded that for the long term success of artificial pruning of wild cherry it is crucial to (i) keep branch stubs short (while avoiding damage to the branch collar), (ii) to enable the tree to maintain significant radial growth after pruning, (iii) to avoid large pruning wounds (>2.5 cm) by removing steeply angled and fast growing branches at an early stage

    Alley coppice—a new system with ancient roots

    Get PDF
    International audience& Context Current production from natural forests will not satisfy future world demand for timber and fuel wood, and new land management options are required. & Aims We explore an innovative production system that combines the production of short rotation coppice in wide alleys with the production of high-value trees on narrow strips of land; it is an alternative form of alley cropping which we propose to call 'alley coppice'. The aim is to describe this alley coppice system and to illustrate its potential for produc-ing two diverse products, namely high-value timber and ener-gy wood on the same land unit. & Methods Based on a comprehensive literature review, we compare the advantages and disadvantages of the alley cop-pice system and contrast the features with well-known existing or past systems of biomass and wood production. & Results We describe and discuss the basic aspects of alley coppice, its design and dynamics, the processes of competi-tion and facilitation, issues of ecology, and areas that are open for future research. & Conclusion Based on existing knowledge, a solid founda-tion for the implementation of alley coppice on suitable land is presented, and the high potential of this system could be shown

    Performance of Sida hermaphrodita and silphium perfoliatum in Europe: Preliminary results

    Get PDF
    This paper reports preliminary results on growth and biomass production of two perennial herbs, Sida hermaphrodita (Virginia Mallow) and Silphium perfoliatum (Cup Plant), tested in the frame of SidaTim project (FACCE-SURPLUS) in German, Italy, Poland and UK. Sida can be used for energy or as a basic compound for various material products, such as fibre products or particle board. Silphium can be alternative to maize for biogas production

    Two novel energy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. - State of knowledge

    Get PDF
    Current global temperature increases resulting from human activity threaten many ecosystems and societies, and have led to international and national policy commitments that aim to reduce greenhouse gas emissions. Bioenergy crops provide one means of reducing greenhouse gas emissions from energy production and two novel crops that could be used for this purpose are Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. This research examined the existing scientific literature available on both crops through a systematic review. The data were collated according to the agronomy, uses, and environmental benefits of each crop. Possible challenges were associated with high initial planting costs, low yields in low rainfall areas, and for Sida hermaphrodita, vulnerability to Sclerotinia sclerotiorum. However, under appropriate environmental conditions, both crops were found to provide large yields over sustained periods of time with relatively low levels of management and could be used to produce large energy surpluses, either through direct combustion or biogas production. Other potential uses included fodder, fibre, and pharmaceutical uses. Environmental benefits included the potential for phytoremediation, and improvements to soil health, biodiversity, and pollination. The review also demonstrated that environmental benefits, such as pollination, soil health, and water quality benefits could be obtained from the use of Sida hermaphrodita and Silphium perfoliatum relative to existing bioenergy crops such as maize, whilst at the same time reducing the greenhouse gas emissions associated with energy production. Future research should examine the long-term implications of using Sida hermaphrodita and Silphium perfoliatum as well as improve knowledge on how to integrate them successfully within existing farming systems and supply chains

    Comparative economics of Sida hermaphrodita (l.) Rusby and Silphium perfoliatum L. as bioenergy crops in Europe

    Get PDF
    The purpose of this research was to fill the identified gap on financial data of Sida hermaphrodita (L.) Rusby (Sida) and Silphium perfoliatum L. (Silphium), two perennial bioenergy crops that potentially provide a more sustainable alternative/complement to other bioenergy crops. Using discounted cash flow analysis, the Net Present Values of Sida and Silphium were compared to a rotation of other arable crops including maize, and the two energy crops of short rotation coppice and Miscanthus. The analysis was completed using the SidaTim analysis tool for the UK, Italy, Germany and Poland, producing a total of four independent models. The results showed that with no subsidies, cultivating Sida was unattractive in all four countries relative to other crop options. However, Silphium, was an economically viable option in each country. Both Sida and Silphium can offer greater environmental benefits than other arable crops, and the profitability of each crop would be further enhanced if additional payments for such public services were made to farmers, and if there were secure markets for the sale of the biomass. This study is the first comparative economic analysis in West and Central Europe of the two novel energy crops in comparison to more common energy crops and an arable rotation

    Exploring the branch wood supply potential of an agroforestry system with strategically designed harvesting interventions based on terrestrial LiDAR data

    Get PDF
    Agroforestry systems hold potential for wood and tree biomass production without the need of felling trees. Branch wood harvesting provides access to considerable amounts of lignocellulosic biomass while leaving the tree standing. Aiming at alternatives for wood provision, we assessed the actual woody structure of a silvopastoral system in the African Savannah ecoregion, utilising terrestrial LiDAR technology and quantitative structure models to simulate branch removals and estimate harvesting yields. In addition, the stand structure and harvested wood were examined for the provision of four types of assortments meeting local needs, and operational metrics for each treatment were derived. The stand had large variability in woody structures. Branch harvesting interventions removed up to 18.2% of total stand volume, yielded 5.9 m3 ha−1 of branch wood, and delivered 2.54 m3 ha−1 of pole wood quality, retaining on average more than 75% of the original tree structures. Among the most intense simulations, a mean of 54.7 litres (L) of branch wood was provided per tree, or approximately 34.2 kg of fresh biomass. The choice of an ideal harvesting treatment is subject to practitioners’ interests, while the discussion on aspects of the operation, and stand and tree conditions after treatment, together with outputs, assist decision making. The partitioning of tree structures and branch removal simulations are tools to support the design of tending operations aiming for wood and tree biomass harvesting in agroforestry systems while retaining different functional roles of trees in situ.Supplementary File S1. Figure S1: Individual tree point clouds identified by colours (up), leaf-on mode evidenced by intensity values (middle), and the leaf-off point clouds (bottom); Figure S2: Stand-level wood assortments available in linear meters for each simulated harvesting treatment; Figure S3: Boxplots of the absolute branch volume removal in each harvesting simulation with the red crosses representing treatment means; Table S1: QSM-derived tree parameters for trees in the stand (n = 66); Table S2: Optimised QSM input parameters for each tree; Table S3: Summary of available assortments and yields per harvesting treatment.Supplementary File S2 contains the assessment of assortments on a tree basis for each harvesting simulation.The German Federal Ministry of Education and Research (BMBF). The article processing charge was funded by the Baden-Württemberg Ministry of Science, Research and Art and the University of Freiburg in the funding programme Open Access Publishing.https://www.mdpi.com/journal/forestsdm2022Plant Production and Soil Scienc

    Agroforestry : an appropriate and sustainable response to a changing climate in Southern Africa?

    Get PDF
    CITATION: Sheppard, Jonathan P. et al. 2020. Agroforestry : an appropriate and sustainable response to a changing climate in Southern Africa? Sustainability 12(17):6796, doi:10.3390/su12176796.The original publication is available at: https://www.mdpi.comENGLISH ABSTRACT: Agroforestry is often discussed as a strategy that can be used both for the adaptation to and the mitigation of climate change e ects. The climate of southern Africa is predicted to be severely a ected by such changes. With agriculture noted as the continent’s largest economic sector, issues such as food security and land degradation are in the forefront. In the light of such concerns we review the current literature to investigate if agroforestry systems (AFS) are a suitable response to the challenges besetting traditional agricultural caused by a changing climate. The benefits bestowed by AFS are multiple, o ering ecosystem services, influence over crop production and positive impacts on rural livelihoods through provisioning and income generation. Nevertheless, knowledge gaps remain. We identify outstanding questions requiring further investigation such as the interplay between trees and crops and their combination, with a discussion of potential benefits. Furthermore, we identify deficiencies in the institutional and policy frameworks that underlie the adoption and stimulus of AFS in the southern African region. We uphold the concept that AFS remains an appropriate and sustainable response for an increased resilience against a changing climate in southern Africa for the benefit of livelihoods and multiple environmental values.Publisher's versio

    Alley coppice—a new system with ancient roots

    Get PDF

    Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone

    No full text
    In this study the quantification of biomass within all relevant compartments of a three-year-old poplar clone (P. maximowicii × P. trichocarpa) planted on abandoned agricultural land at a density of 5000 trees ha−1 is presented. A total of 30 trees within a diameter range of 1.8 cm to 8.9 cm, at breast height (dbh at 1.3 m), were destructively sampled. In order to analyze the biomass, the complete tree, stem, as well as all branches, were divided into 1 cm diameter classes and all buds from the trees were completely removed. Total yield was calculated as 11.7 odt ha−1 year−1 (oven dry tonnes per hectare and year). Branches constituted 22.2% of total dry leafless biomass and buds 2.0%. The analyses revealed a strong correlation of the dry weight for all the three compartments with diameter at breast height. Debarked sample discs were used to obtain a ratio between wood and bark. Derived from these results, a model was developed to calculate the biomass of bark with dbh as the predictor variable. Mean bark percentage was found to be 16.8% of above ground leafless biomass. The results concur that bark percentage decreases with increasing tree diameter, providing the conclusion that larger trees contain a lower bark proportion, and thus positively influence the quality of the end product while consequently reducing the export of nutrients from site
    corecore