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Abstract: Agroforestry is often discussed as a strategy that can be used both for the adaptation to and
the mitigation of climate change effects. The climate of southern Africa is predicted to be severely
affected by such changes. With agriculture noted as the continent’s largest economic sector, issues
such as food security and land degradation are in the forefront. In the light of such concerns we
review the current literature to investigate if agroforestry systems (AFS) are a suitable response to the
challenges besetting traditional agricultural caused by a changing climate. The benefits bestowed by
AFS are multiple, offering ecosystem services, influence over crop production and positive impacts on
rural livelihoods through provisioning and income generation. Nevertheless, knowledge gaps remain.
We identify outstanding questions requiring further investigation such as the interplay between trees
and crops and their combination, with a discussion of potential benefits. Furthermore, we identify
deficiencies in the institutional and policy frameworks that underlie the adoption and stimulus of
AFS in the southern African region. We uphold the concept that AFS remains an appropriate and
sustainable response for an increased resilience against a changing climate in southern Africa for the
benefit of livelihoods and multiple environmental values.
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1. Introduction

The agricultural sector faces an unprecedented and daunting task of meeting global food
requirements whilst dealing with climate change in a sustainable manner [1]. Since the formalisation of
agroforestry systems (AFS) as a science and land-use system in the 1970s, there has been an increase in
the attention of political and social discussions on its development and institutionalisation. AFS have
frequently been framed as an important development concept that is able to augment and enhance
existing agricultural systems to alleviate production deficits and risks in the light of a changing climate.
The concept is integrally linked with the potential to address pressing land management problems,
contribution to secure food production, the generation of diversified income for rural households,
enrichment of biodiversity through the provision of ecosystem services, and as a potential for carbon
(C) storage and other mitigation or adaptation practices [2,3].

AFS are deliberate combinations of at least two differing plant types, or in case of silvopastoral
systems plants with animals, one component within AFS is always a woody perennial. This combination
should interact within the same land management unit with distinguished spatial arrangements or
temporal sequences, and have well-defined outputs [4–7]. The presence of trees on farmed land
increases the ecological and aesthetical value of the landscape, and they have an important economic
value for the farmer. To meet the demands of rural stakeholders, the aim of AFS is to combine
ecological with economic returns, i.e., to integrate the cultivation of trees with regular farming activities
representing a more natural and diverse ecosystem.

The southern Africa region, orientated on the Southern African Development Community (SADC)
member states [8], and part of the commonly nominated sub-Saharan African (SSA) region, represents
the southern geographical tip of Africa. Southern Africa is a region that is threatened by the effects of
climate change that are intensified by increasing populations and food security issues [9–12]. In the
light of such concerns, we intend to investigate if agroforestry can act as an appropriate and sustainable
response to the challenges besetting agricultural production systems caused by a changing climate in
this region.

2. Background

Despite the long-standing history of AFS around the world, a palpable re-emergence of interest in
such land-use systems has been observed in recent times. Conventions formed following the 1992 Rio
Earth Summit identified AFS as a land-use management system that could help rehabilitate degraded
land and slow desertification processes [13]. Most recently, the state of the world’s forests report
2018 [14] states as a key message that “It is time to recognise that food security, agriculture and forestry
can no longer be treated in isolation”, a statement that clearly recognises the importance of including
trees in a farmed landscape. The FAO report further asserts that evidence supports the ideas that
forests and trees also make significant contributions to the UNEP’s Sustainable Development Goals
(SDGs) through the informal sector, gender equality, climate change adaptation, and as part of an
integrated solution for confronting land degradation and biodiversity loss [14–17].

Conventional agricultural systems are often simplistic in their spatial and temporal arrangement,
often assuming the form of monocropping systems, such strategies can deliver high returns but
can also be considered high risk. Due to its inherent complexity (multiple species within distinct
special arrangements over a longer temporal scale), the utilisation of AFS adds a level of robustness to
agricultural production facilitating a reduction in production risk. Nevertheless, this is not without
trade-offs, often a more multifaceted system might make less economic sense, reducing yields, while
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increasing and complexifying management operations. AFS presents the opportunity for unlimited
spatial and temporal arrangements optimising and modifying the three-dimensional composition of the
system and adjustment of the mixture and proportion of components over time. Such flexibility allows
the practitioner to utilise opportunities in the early years of AFS establishment to capitalise on light-,
water- and nutrient-demanding crops, before the understory is transformed by the tree component
over time. AFS adopters must acquire a longer-term perspective and an additional skill set for tree
management over those practicing annual cropping alone; this, however, places a large dependence on
knowledge transfer, access to material and secure land tenure to ensure successful adoption.

AFS are extensively practiced in developing countries and are already a major land use system in
SSA [18]; moreover, at least 1.2 billion people around the world have been estimated to be dependent
on such systems [19]. Farmers can benefit from the non-wood forest products (NWFP) provided by
trees such as fruits, gum and nuts, AFS can also provide animal fodder and building materials, and
increase household resilience [1,3,9,15,18,20,21]. Moreover, AFS can provide on-site and off-site benefits
that contribute to sustainable land use [22,23]. On-site benefits include soil conservation, increased
nitrogen fixation, nutrient input, increased water infiltration and reduced evapotranspiration rates of
crops [3,18,24–26]. Off-site benefits include reduced runoff, reduced nutrient loading, and improved
water quality [24,26,27]. In Africa, soil conservation and soil fertility management are arguably often
the most important aspects to maintaining long-term agricultural land [9]. This paper aims to study
some of these attributes (as highlighted in Figure 1) in greater detail.
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direct and indirect mitigation of predicted climate change impacts.

Although the history of AFS in southern Africa is ancient, a milestone for the region was the
formation of the Southern Africa Regional Agroforestry Programme, which was initiated in 1987,
by the organisation now known as World Agroforestry (formerly International Centre for Research in
Agroforestry; ICRAF) in partnership with national research institutions in Malawi, Zambia, Zimbabwe
and Tanzania [28]. The program was aimed at addressing the problems common to most rural
households in the region such as low soil fertility and consequent low crop and livestock production,
low cash income, and shortages of fuelwood and timber. During the 1990s, nitrogen-fixing and
fast-growing tree/shrub species (e.g., Sesban (Sesbania sesban l. Merr.) and Gliricidia (Gliricidia sepium
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(Jacq.) Kunth ex Walp.)), intercropping of food crops with coppiced trees, tree fodder banks, rotational
woodlots and research on indigenous fruits, were identified as key directives to provide solutions for
many regional issues [9]. The state of the art of AFS research and development in southern Africa,
by that time, was synthesised by Kwesiga et al. [28]. Here, they assessed the scaled-up adoption of
AFS for food security, poverty alleviation and environmental sustainability, to be accomplished by
key strategies. Such approaches included the provision of substitutes for costly agricultural inputs;
production diversification; marketing strategies; processing of products; employment of GIS-based
technologies; and information-sharing, training and collaborative partnerships in implementation
and dissemination of AFS. In 2019 ICRAF merged with the Centre for International Forestry Research
(CIFOR) to present a transformative agenda for forests, trees, people and the planet solution unifying a
previously fragmented approach and aligning with the three Rio conventions, the SDGs and recent
Intergovernmental Panel on Climate Change (IPCC), Intergovernmental Platform on Biodiversity and
Ecosystem Services (IPBES) and United Nations Convention to Combat Desertification (UNCCD)
reports [29].

In the crib of the Miombo woodlands ecotype, where agricultural systems consist mainly of
continuous maize-mixed cropping and extensive production of cattle and goats, Luedeling et al. [30]
differentiated the wide range of AFS being employed by farmers in southern Africa by specification
of traditional (i.e., intensive intercropping) and improved practices, promoted by researchers and
development aid agencies. AFS including trees with food or cash crops, relay fallow intercropping,
rotational woodlots and permanent tree-cereal intercropping, received most of the scientific attention
in the beginning of the 21st century [30]. Additionally, many benefits of AFS trees providing varied
raw materials and ecosystem services, such as soil fertility, fuelwood, poles, fruits, or shade, were
already investigated [9,31–33].

Highlighting many complementary practices supporting conservation agriculture in southern
Africa (AFS being one of them), Thierfelder et al. [34] reviewed the multitude of studies that can
contribute to better farming, considering regional edaphoclimatic conditions and socio-economic
aspects. In this study they showed that smallholders, cultivating less than 5 ha, constitute the
majority of farmers in southern Africa. Moreover, in terms of investments towards planting trees
and establishing AFS, secured land-use rights and tenure systems were identified as key drivers for
attracting (or dissuading) farmers’ adoption of AFS in the region.

3. Predicted Changing Climate Effects on the Southern African Region

Southern Africa has experienced an increase in extreme weather events and inter-annual rainfall
variability over the past 40 years, with intermittent droughts and rain seasonality changes [9,35,36].
Future climate change effects are predicted to further strongly influence the climate of southern African
regions. Land surface warming is expected to exceed the global mean [37,38]. Moreover, an increase in
drought events causing a loss or degradation of productive cropland is expected, particularly in the
western and southwestern part of the region [37–42]. The continuing rainfall deficit in southern Africa
has already resulted in food shortages due to poor production and rising food prices, meaning that
41 million people faced food insecurity in the peak lean season 2019/2020 [11]. Meanwhile, tropical
regions have the potential to become wetter [38], while sub-tropical regions are more likely to be
affected with shifts in current rainfall patterns [36,43–45].

The effects of climate change (see Figure 2) will change tree growth in the region [46]. But even
more importantly, there will be profound consequences on crop yields on the African continent [18],
an issue comprehensively reviewed by Zinyengere et al. [47]. Consensus suggests that under predicted
climatic conditions, crop yield may decrease directly affecting food security and rural livelihoods.
Staple food crops such as maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), wheat (Triticum
spp.) and millet (e.g., Eleusine spp. and Pennisetum spp. et al.) are all forecast to deliver reduced
yields [48–51] linked to factors such as reduced precipitation [52]. Likewise, climate changes were
suggested to induce increased degradation and fragmentation of African rangelands [41] alongside
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increased drought events that bring about livestock losses through lack of drinking water and loss
of fodder. Climate change may also lead to increased land degradation due to erosion processes,
loss of soil organic carbon (SOC) and soil nutrients as well as a decrease in above and belowground
biomass [26]. This is compounded by an increase in pests and diseases [36]. For these reasons,
the employment of AFS has been widely lauded to be able to reduce the vulnerability of smallholder
farmers and to increase their resilience to predicted climate change [21], the following section examines
these issues in greater detail.
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Figure 2. Consequences of a changing climate for southern African livelihoods with mitigation and
adaptation solutions provided by agroforestry systems.

4. Consequences of Predicted Changing Climate Effects for the Southern African Region,
Mitigation Offered by Agroforestry Systems

AFS is often discussed as a strategy that can be used both for adaptation to and mitigation of
climate change effects [9,27,53–55]. Our aim is to find evidence of how AFS can be utilised as a means of
buffering and mitigating the predicted climate change effects (See Figure 2) on agricultural production
systems, rural livelihoods, food security and local microclimates. Moreover, we investigate which
solutions AFS offers to improve both the yield and the resilience of existing production systems by
presenting an increased range of cropping options, ecosystem services and the protection of vulnerable
sites from degradation as a result of the above defined effects and consequences.

4.1. AFS as an Agro-Engineering Measure to Influence Crop Water Demand

In agriculture it is often important to reduce crop water demands through agro-engineering
measures which directly influences soil evaporation and crop transpiration. The use of tree shelterbelts
or windbreaks is a traditional measure to reduce wind speed, especially in commercial farming systems
within regions with high wind speeds (e.g., in the Western Cape, South Africa). The introduction of
obstacles within the air flow significantly influence the near-ground wind field and thermal energy, the
addition of trees into a treeless landscape achieves just this. The physical processes of evapotranspiration
are mainly driven by the saturation deficit of the air, dependent on temperatures, radiation balance
and the near-ground wind speed [56]. Evapotranspiration processes are also dependent on turbulence
and increase exponentially with wind speed over the canopy of a crop or stand. Various investigations
have shown the reduction of wind speed on the downwind side of a shelterbelt as a function of
distance, aerodynamic porosity and height [57,58]. Effective reductions of wind speed were measured
to a distance of four to six times the height of the shelterbelt, minor reductions are effective up to 35
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times the height [59]. While distance to a shelterbelt is a parameter dependent on height and porosity,
it has great significance for the planning of field width between two rows of shelterbelts in an AFS.
However, most existing empirical approaches applying such parameterisation focus on the reduction
of wind erosion but do not consider evapotranspiration and crop performance. A recent study in the
Western Cape, South Africa highlighted the positive effects of a poplar (Populus simonii (CarriÈre)
Wesm.) windbreak on the combined reduction of wind speed and evapotranspiration in a vineyard [60].
Mean wind speed at crop height (2 m) was reduced by 27.6% over the entire year and by 39.2% over
the summer growing season compared to a reference station. Furthermore, there was an observed
reduction in crop evapotranspiration of between 18.4% and 20.4% during the main growing season,
corresponding to other studies conducted within Mediterranean and temperate AFS [25,61]. Based on
this finding, the underpinning concept lies on an optimal integration of hedgerows, or tree shelterbelts,
within agricultural landscapes to optimise the interaction between trees and agricultural production
focusing on the synergistic water use of crops.

Beside the reduction of the wind and its positive effects on evapotranspiration, the shade cast
by trees in AFS has the potential to affect the growth of agricultural crops grown in the immediate
vicinity, due to a reduction in direct radiation. For example, midday temperatures were reduced
by 6 ◦C under Faidherbia (Faidherbia albida (Delile) A.Chev.) in Ethiopia in comparison with open
fields [62]. Nevertheless, research to gauge the magnitude of such a shading effect of AFS and an
appropriate crop selection is still lacking on a wider scale. In higher latitudes, light limitation and
growth reduction become more pronounced in the near tree vicinity of AFS and there may be a
tendency for crops to present a reduced yield when shaded [25,63]. Ghezehei et al. [64] studied
the impact of hedgerow intercropping systems using a Jatropha curcas (L.)—Pennisetum clandestinum
(Hochst. ex Chiov) system yield in KwaZulu-Natal, South Africa. Close to the trees the grass yield
was reduced by 57–63% compared to the interspaces with an average yield of 7.03 t ha−1. However,
the reduction of the yield was a combination of the reduced irradiance and water competition between
the tree and grass. Nevertheless, shading may also be beneficial to the intercrop depending from its
shade tolerance and ecophysiological adaptation. In tropical and sub-tropical regions with higher
irradiance input, trees have positive implication on the radiation and energy balances of the adjacent
crops and can prevent the overheating of leaves and reduce light stress. Solar radiation levels
common to tropical and sub-tropical regions are sometimes high enough to cause photo-inhibition of
photosynthesis, especially under water limited conditions. In clear sky conditions solar irradiance is
the main source of heat stress in crop systems [65], and therefore, commercial farmers often use shade
nets (e.g., for citrus [66]) to reduce high radiation loads, leading to reduced crop temperatures and
to increase growth performance. Furthermore, shade can result in longer moisture retention due to
reduced evapotranspiration. However, better designed AFS systems which take the light and radiation
conditions into account may be able to replace the artificial and costly shading nets in the future. Tree
3D-based applications modelling shade in high spatial and temporal resolution already exist [67],
aiming at a quantification of solar energy losses on ground around a tree-cylinder-model. When
appropriate shading effects can be further minimised by, for example, regular pruning treatments [68]
or the establishment of tree rows in a northeast-southwest orientation to minimise shading effects
and to increase self-shading against sunburn or sunscald effect on the trunks of trees [69]. In view
of climate change, the small-scale climatic zones around the trees could be reassessed, as shading
reduces heat stress and evaporation. Furthermore, the presence of shade trees alone has been linked
to an increased amount of soil organic matter (SOM) [70] and when in combination with livestock,
an increase in fertilisation. An optimal management and planting scheme and the selection of crops
(e.g., vegetables), could thus, have a positive effect on the yields in smallholder agriculture. However,
research on this is only just beginning.

In principal, the underlying processes of the plant-microclimate interactions (and here especially
the windbreak functions of AFS) are well-investigated and understood. However, little information
is available on the spatial impact of the microclimate on the ecophysiological processes of crops.
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The complex connections between abiotic factors of the microclimate and the soil, which are influenced
by the trees, lead to a spatial differentiation of cultivation zones in the vicinity of the trees. There is
still a great need for research in this area, as it provides important information for the establishment
of AFS. This also concerns the biotic interactions between the trees and the crops, which, in addition
to positive effects, also include competition for water, nutrients and light. The special importance of
AFS as an adaptation to climate change is highlighted by a large number of publications. However,
there is a lack of concrete studies and simulation approaches, especially for drylands, that examine the
feedback between trees, crops and microclimate. Here, a more systematic approach is needed.

4.2. Modification of Water Fluxes

Water availability in AFS is primarily determined by prevailing climatic conditions (e.g.,
temperature, precipitation, wind), especially potential evapotranspiration, site and soil characteristics,
and the tree species and crops involved. Trees within AFS can significantly influence the water
availability for agricultural crops: tree roots penetrate deeper into the soil than many agricultural
crops, and thereby, potentially increase the water infiltration rate and capacity [18,24,71,72]. Trees can
also increase evapotranspiration by transpiring water from deeper soil layers and redistribute water
towards the surface [73,74], which can also increase competition for water.

Hydrological interactions between trees and crops in AFS range from mutually beneficial to
critically competing, especially in dry regions where water can be a limiting factor for plant growth.
Such competition for water can potentially outweigh the benefits of AFS [63,75,76]. For instance,
a study by Odhiambo et al. [77] in an AFS system in Kenya consistently found more soil water in control
plots (without trees) than in plots with trees. Furthermore, volumetric soil moisture content was higher
with greater distance from the trees. The same outcome was also found under Calliandra (Calliandra
calothyrsus Meissner) trees where a soil moisture decrease of 15% was recorded [78]. Conversely, in a
study in Zambia, Chirwa et al. [79] found higher soil water content under Leucaena leucocephala ((Lam.)
deWit) and Flemingia macrophylla ((Willd.) Merr.) hedgerows compared to the maize rows in the
alleys. Similarly, Siriri et al. [78] reported an increase in soil moisture of 18% under Alnus (Alnus
acuminata Kunth) in an AFS in Uganda compared to plots without trees. Such contrasting results
emphasise the importance of the difference in tree water requirements between species which must be
acknowledged during the planning phases of AFS implementation or recommendation.

The concept of hydrological niches (cf. [80]) is necessary when considering the belowground
interactions between plants and their environment and the temporal dynamics of these interactions.
The concept describes that plant species which compete for the same resources (in this case water) have
niche differences, which allow their coexistence. A first review on hydrological niche segregation was
published by Silvertown et al. [81]. They proposed three types of constraints (an edaphic, a biophysical
and a structural one) that lead to the trade-offs underlying hydrological niche segregation (HNS) and
found evidence of HNS in 43 out of 48 field studies. However, the mechanisms behind HNS could not
be distinctly identified as many aspects of hydrological interaction contribute to the overall picture.
This is similarly unclear for AFS.

A favourable interaction of trees and crops within AFS is hydraulic lift. Deeply established root
systems of woody perennials can lift water from deeper soil layers towards upper, drier soil horizons,
making water available for surrounding crops, a feature especially useful during dry periods for
AFS in semi-arid regions [75,82–85]. The wider term of water redistribution includes not only the
upward water movement during dry spells but also the movement and storage of excess water in the
sub-surface to deeper soil layers, making the root system a mechanism for the balancing of soil water
gradients [73,86–90]. However, when water is being redistributed it is not necessarily available for
neighbouring plants. A study by Fernández et al. [75], for instance, reported that the water use of
pines (Pinus spp.) in AFS consisted of about 20% of water from the upper 20 cm of the soil, implying a
degree of competition with the crops. Therefore, new management strategies have been developed, for
instance, a so-called water safety-net. Competition for water is minimised by complete shoot removal,
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thereby preventing transpiration. These plants still perform a support role, raising water from lower
soil depths, and they increase dry biomass production despite water limitations [90,91].

The term water use efficiency describes the balance of water needed for plant metabolism and
growth and the water loss through transpiration. In an AFS context, it sometimes describes the
complementary use of water by different plants in the sense that water is taken up at different times
or from different depths, and hence, more water is being used in total, even though there is no
nursing effects from trees to crops (e.g., [92–95]). Under typical rainfall conditions in southern Malawi,
Chirwa et al. [93] showed that there was sufficient water stored in the soil profile during the dry
season to support growth of Gliricidia and pigeon pea (Cajanus cajan (L.) Millsp.). The case study
demonstrated temporal complementarity resulting from the use of residual water by deep-rooted trees
after the maize was harvested. Furthermore, Gliricidia pruned before and during the cropping season
did not deleteriously compete for water with associated crops, while tree-based systems appeared with
higher water use efficiency than in a pigeon pea and maize consortium, and in sole maize treatments.

Hydrological fluxes in AFS are defined and regulated by soil characteristics. The various studies
reviewed in Sileshi et al. [96], demonstrated the role of fertiliser trees modifying water fluxes by
improving the physical properties of soils (i.e., bulk density, aggregate stability, porosity) in AFS in
Zambia, Zimbabwe, Malawi and other countries. Kuyah et al. [97] found a more pronounced effect of
AFS on water infiltration characteristics than on actual soil water content, since the latter is subject to
tree uptake and transpiration.

Additionally, hydrological fluxes are time-variant. They shift on the scale of days, vegetation
periods, years and between years, and are influenced by land use and changing climatic conditions.
With respect to AFS, hydrological benefits to agricultural crops are, for example, changing with
time since AFS establishment. In early stages, the superficial root systems of young trees increase
belowground competition as they share soil layers with cash crops and tend to consume more water
and nutrients than mature trees [98].

Positive examples of AFS systems with hydrological benefits can be found throughout different
climatic regions and are not limited to specific rainfall patterns, soils or other influences. It appears
that suitable systems can deliver positive feedbacks and enhance yields and soil hydraulic properties.
However, many open questions remain. Hydrological benefits need to be evaluated in relation to the
species combination, soils and management practices for different regions. Kuyah et al. [97] started
disentangling this issue in their review. Based on a meta-analysis, the authors related environmental
conditions of AFS systems with yield results and water availability. The principle trade-offs were
low available phosphorus concentrations and low soil water content vs. increased crop yield. They
concluded that, on average, the utilisation of AFS in SSA can increase crop yield while simultaneously
maintaining delivery of regulating ecosystem services [97].

4.3. Augmentation of Soil Fertility

Land degradation runs hand-in-hand with the nutrient depletion of soils and is a serious threat
to food security. AFS can provide a wide range of opportunities for smallholder farmers without
the need to access expensive fertilisers [18,99]. The majority of smallholder farming systems in SSA
are without or under sub-optimal use of fertiliser, e.g., N input of less than 1 kg ha−1 yr−1 [100]. Yet,
farmers acknowledge the environmental role of trees (aside from erosion control and thus lower
fertility loss, salinity decreasing, drought prevention, fire control and others) as a method of nitrogen
fixation. Nitrogen fixing trees and shrubs (e.g., Acacia spp., F. albida, Casuarina spp. and others) have
important ecological potential in dryland forestry and are often integrated into AFS (for example,
within many silvo-pastoral systems, e.g., [101]) contributing to sustainable agriculture by restoring and
maintaining soil fertility and productivity [102]. Their inclusion is an effective way to increase nutrient
use efficiency and to improve soil health parameters [103]. The actual state of knowledge provides
little information on specific conditions where AFS are successfully established [3]. Experiments with
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different nitrogen-fixing tree species under different climatic and site conditions would, therefore,
provide important information on suitability and benefits of specific legume trees.

The role of fertiliser trees and their contributions towards food production and security issues were
addressed by Sileshi et al. [96], with many reported cases in southern Africa, including records of cereal
and vegetable yields in response to the presence of fertiliser trees, condensed from studies in AFS across
SSA. Coulibaly et al. [104], investigating the adoption of fertiliser trees by 338 farmers in Malawi, found
that implementation is ruled by a perceived effectiveness of this technology in restoring fertility on
degraded land, by previously acquired knowledge in management practices for AFS and the existence
of farm assets. In an experiment in southern Malawi, the integration of legume trees as fertiliser trees
within AFS could reduce the need for artificial N-fertilisation by 75% [33]. Experiments in Zambia
and Malawi, where Faidherbia trees are commonly planted in unfertilised smallholder farmlands,
were reported with an increased maize yield in up to three times on the plants neighbouring trees
when compared to ones outside tree canopy coverage [100,105]. Likewise, Akinnifesi et al. [106] and
Beedy et al. [107] showed in a research trial in southern Malawi that significantly higher maize yields
can be achieved in intercropping systems with biological N fixation (BNF) compared to single crop
maize cultivation. Considerably increased chemical soil fertility parameters, such as cation exchange
capacity, nitrogen and phosphorous concentrations, were observed after a 14-year intercropping period.
A study conducted in Zambia showed no significant changes of basic chemical soil quality parameters
(i.e., nitrogen and phosphorus content, cation exchange capacity, soil organic carbon), after twelve
years of conservation agriculture with no tillage and on-site remaining harvest residues, probably due
to small net input of organic carbon [108].

The BNF of trees in drylands leads to the question of how one can maximise and/or optimise their
effects, especially under the pressures of a changing climate, and how we can manage BNF and the
transfer of nitrogen to associated soils. Understanding the functional adaptations of nitrogen and
phosphorus nutrition in BNF trees and shrubs is crucial for understanding soil-plant interactions and
to optimise tree growth in nutrient-poor and water-scarce ecosystems. Still, the understanding of
N-fixation in different AFS and its effects on crop yields must be studied further in southern Africa to
fulfil this knowledge gap.

4.4. Prevention of Soil Erosion and the Degradation of Agricultural Land

Soil erosion is the main reason for land degradation in southern Africa and a serious threat to
agricultural productivity and sustainability [109]. Montanarella et al. [110] identify erosion as the
greatest threat to African soils. Agricultural soils, mostly tilled and with temporarily bare soil surface,
are particularly at risk [111]. The susceptibility of soils to erosion is described as erodibility and
is controlled by various soil characteristics, whereas aggregate stability and soil structure play an
important role [112]. AFS provide the opportunity to improve both soil properties on agricultural
lands [113]. Tree and crop residues are continuously added to the soil, boosting the formation of soil
aggregates and soil structure [114]. A connection between the capacity of soils to stabilise organic
matter and soil structure is scientifically proven [115].

Besides the organic matter input, physical soil properties are just as important to reducing soil
erodibility and are often neglected [116]. A number of studies showed that the aggregation process is
more influenced by soil texture and site-specific soil minerals than by organic matter input [117,118].
Therefore, AFS research should focus more on aggregate formation and aggregate properties [53].
Knowing more about the part carbon actually plays in these processes would help to better understand
site-specific susceptibility of soil to erosion and conservation measures could be better addressed.
It is often assumed that the implementation of AFS potentially reduces soil erosion [3,15,119,120],
although very little specific data are available on erosion control and soil conservation with reference
to southern Africa.

Aeolian sediment transport is a natural phenomenon leading to environmental issues in many
landscapes worldwide. Wind erosion is responsible for more than 46% of global soil degradation in
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arid regions [121–123]. In northern Africa, the process of wind erosion on the agricultural landscape
has been researched and documented; studies in southern Africa are largely lacking [124], very likely
because wind erosion is not widespread in the region; however, increased tillage and continuous
cultivation accelerate land degradation and the risk of erosion through combination of reduced input
of organic matter, high temperatures and reduced rainfall [125].

The geological processes of wind erosion and dust emission are driven by an interaction of climate,
vegetation properties and human interference [126]. When wind velocity exceeds a threshold for
movement of certain soil particle sizes, it results in wind erosion, while the surface roughness has an
influence on the aerodynamic turbulence. Roughness elements range from macro- to microregional
scales, consisting of landforms, the predominant soil surface structure and vegetation [127]. As wind
erosion is also a very effective sorting process, dust emission or deposition significantly influence
the carbon and nitrogen balances of soils [128]. Lessons learnt from other regions have shown that
the emitted dust removes the most valuable parts of a soil, as particles in the silt and clay fraction
and the SOC in its particulate form. Soil dust from agricultural land can be enriched in SOC up
to 17 times compared to the original soil [129,130]. These losses are not considered in most matter
balances although the lost quantities represent a disproportionately high loss of soil quality [131]. Due
to the low net primary production of most regions affected by wind erosion, removed SOC can be
regarded as an irretrievable loss at the eroded site [132].

The main usage of vegetative windbreaks as an applied form of AFS is the reduction of wind
velocity on the leeward side [60,133]. Learning from studies in the Sahel, where soil and climate
conditions are similar to the semi-arid regions of southern Africa, the effectiveness of shelterbelts is
dependent on height, porosity, incident wind angle and by the leeward crop itself [134]. While the
effect of the height is up to 40 times leeward [135], the influence of porosity is in the immediate vicinity.
A high porosity on ground level allows air flow and prevents a build-up of pressure differences, which
would lead to increasing turbulence leeward, diminishing the extent of shelter. The maximal protective
effect is with an incident wind angle of 90◦, while a reduction of wind speed in the order of 10–25%
is still feasible with parallel structures. During the growing season, there is a shift of the zone of
maximum shelter towards the windbreak, caused by the change of porosity, variation in climatic
conditions, as well as the growth of the crop [134,135].

4.5. Provision of Biodiversity Benefits

Biodiversity is by default a multi-dimensional subject, covering genes, species, functional forms,
adaptations, habitats and ecosystems, as well as the variability within and between them [136].
All these are closely interwoven and affect the stability, resilience and productivity of the ecosystem
and its services. Functional diversity of biodiversity refers to the richness of the functionally different
types of organisms with their different niches, habitats and positions on the food web. Functionally
diverse populations are seen as more resilient against stress and shock and less likely to change
their behaviour [137]. Species differ in their ability to influence and modify ecosystem processes and
some species with certain functional traits are more able to do so than others. Forest plantations
and AFS have a high potential for the augmentation of biodiversity in a given area with increased
species variety and structure [18]. Understanding the interplay between the different levels (types) of
biodiversity is significant when assessing the value of biodiversity in combination with alternative
land-use management strategies.

Acknowledging the role played by forest resources in influencing and shaping practices in AFS,
De Cauwer et al. [138] provided a clear picture of woodland resources, management and utilisation in
southern Africa. With the exception of Afromontane forests, the region features three main forest types;
Miombo, Mopane and the Zambezian Baikiaea woodlands; these are found in the northern reaches
of the southern African region (generally > −20◦ latitude). These forest types have a predominantly
deciduous forest formation, which allows enough light to reach the ground, enabling the growth of
a rich grass layer. Forests cover on average 32% of the southern African countries but are mostly
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situated in the tropics. Southern Africa possesses an area covered by forest plantations of 1.95 million
ha, equivalent to 1.5% of the total forest cover and 0.4% of the total land area [138]. Forest loss
and degradation is an issue within these areas, regeneration through coppicing is swift, but lacking
structural diversity [139–141]. However, it is also reported that fire presents a greater threat to forest
cover in this region [142].

The Global Drylands Assessment [143], carried out by means of visual interpretation of satellite
images, provides results on the extent and spatial distribution of dryland vegetation, including trees,
shrubs, grasses and crops, for eastern and southern African regions as a baseline for monitoring changes
in dryland forests, tree cover and land use by aridity zone. In the region, drylands cover a total area
of 224 million hectares, representing 84% of the region’s land area and 3.6% of the world’s drylands.
Trees outside forests (TOF)—defined as trees on lands other than forests and other wooded land—are
present on 28% of the drylands area not covered with forest and woodlands in southern Africa. Yet,
47% of the southern African dryland area has no tree cover. Such evidence serves as basis to support
decisions on land-use planning and on the implementation of strategies to enhance climate change
resilience, biodiversity conservation and the maintenance of ecosystems services. This information
can assist in the prioritisation of investments related to the restoration and rehabilitation measures for
the drylands, bringing new possibilities to the implementation of AFS.

AFS increase structural diversity and support a greater faunal diversity with many positive effects
on food webs and pollinators. Arthropods, for example, are indicators of a wide range of ecosystem
services, such as pollination, biological pest control and decomposition in natural and agricultural
ecosystems. Only a few studies investigated the biodiversity in southern Africa under different land
uses including AFS. In [144], an increase in various soil invertebrate groups was shown in AFS in eastern
Zambia, while Magoba and Samways [145] studied the biodiversity of arthropod communities around
native and non-native trees in vineyards and natural South African Fynbos vegetation. For biodiversity
conservation, AFS should be integrated into the ecological corridor concept and linked to the natural
ecosystems [146], while AFS providing natural heterogeneity and edges in forest-like patches in open
agricultural fields for faunal elements [147].

Invasive, alien trees [148] are of major concern for natural South African ecosystems, e.g., in the
Fynbos in the Western Cape due to their drastic impacts on water resources and biodiversity [149,150].
In general, it is assumed that indigenous trees use significantly less water, but they grow more slowly
than exotic, non-native tree species. Despite first studies on water consumption and water-use efficiency
of native vs. introduced tree species in southern Africa (e.g., [151]) there is still a lack of information.
The same is true for effects of non-indigenous and non-invasive trees on ecological processes, including
the provision of these ecosystem services. Despite a growing body of publications on the relations
of trees and ecosystem services (see [152–160]), knowledge in this field is still far from complete.
However, the use of native tree species can potentially lead to better production while decreasing costs
for management and decreasing hydrological impacts especially on problematic locations with, e.g.,
water limitation or high erosion risks sites [95].

4.6. Contribution to Natural Pest Control

Monocultures are notorious for their sensitivity and vulnerability to pests; entire crops can be lost
to a single pest species during a single event. AFS has often been touted as a land-use system that
can contribute to natural pest control, the increase in structural diversity can augment the functional
biodiversity of the site, thus benefiting the natural antagonists of crop pests [161,162]. Recent research
and meta-analyses have shown that trees in agricultural lands were likely to be providing refuge
to insectivorous vertebrates and ground dwelling natural predators [162,163] although this is most
likely pest species-dependent while also being dependent on crop and tree species combinations [161].
Meanwhile, it is also reported that the presence of trees does not necessarily increase the resilience of
AFS against antagonists alone, but in combination with microclimatic conditions that influence pest
performance, crop growth and soil conditions [163]. Further research and empirical study is needed
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to increase the understanding of the relationships between tree cover, food webs and natural pest
suppression [161,162] with the development and testing of crop-pest modelling tools in multiple AFS
systems of varying complexity.

4.7. Buffering and Prevention within Integrated Fire Management Planning

An increase in temperature, coupled with likely more erratic patterns of rainfall and windspeed are
predicted for large parts of southern Africa. Many southern African landscapes have a pronounced dry
season, and in these high radiation drylands, vegetation often synthesises reduced compounds (e.g., oils
and lipids) that renders it more fire-prone. Southern Africa also has an increasing population, sporadic
outbreaks of political instability and intensified land-use patterns, and these facts, combined with more
erratic climatic patterns, are likely to increase the incidence and size of wildfire events. Reduction
of fuel loads in strategic places and its fragmentation at the landscape level constitute probably the
most powerful approaches to reduce the vulnerability of these landscapes under threat [164,165].
While AFS may lend itself to appropriate fuel management strategies, it remains essential that these
systems are incorporated in landscape-level strategies for integrated fire management. AFS are seldom
designed with the primary aim to combat wildfires. While it is true that specific AFS can be used to
contribute to the strategic reduction or fragmentation of burnable fuel loads at the landscape level,
some systems may increase fuel accumulation and thus make landscapes more vulnerable to wildfire.
Ultimately, efficacy of AFS to contribute to fire safety will greatly depend on appropriate designs being
implemented in specific locations and its integration into the landscape-level fire management strategy.

4.8. Increased Potential for Carbon Sequestration

AFS present the ideal opportunity for increased C sequestration within biomass and soils [9,18]
as woody perennials can capture atmospheric CO2 and store C above- and belowground. In general
terms within the composition of woody plants, C constitutes approximately 50% of dry weights of
specific plant parts (stem, branches, roots, etc.), and circa 30% of a plant’s foliage. Growth rates vary
along the lifespan of woody plants, and define the potential C sequestration rates, together with tree
age, growing conditions (environment) and management practices applied. Furthermore, the woody
biomass differs by its specific mass (wood density), within and between perennial species, affecting the
total C stored.

The inclusion of trees within tree-less agricultural landscapes provides an extra-annual storage
of C that would not be realised with annual cropping alone, alongside the dynamic incorporation of
biomass within the soil matrix which increases C stored in the soil. At longer temporal scales, AFS aims
at hosting mature trees, with a perennial character, with reduced wood harvesting interventions (i.e.,
pruning for fodder or fuelwood), or treatments aiming for the production of a higher-value product
(i.e., pruning for knot free timber, for long-term C storage) which can achieve an increased C sink
capacity, over other AFS and conventional monocropping systems.

Zomer et al. [54] assessed the contribution of AFS to global and national C budgets between 2000
and 2010, and found a minimum of 10% tree cover (in 2010) on 43% of all agricultural lands, an increase
of 2% since 2000. Globally, biomass C increased from 20.4 to 21.4 t C ha−1 on agricultural lands: 75%
contributed by the tree component. Nevertheless, with a total agricultural area of over 1.5 million km2,
eastern and southern Africa displayed minimal changes concerning average biomass C (14.6 t C ha−1).

Aboveground C accumulation has been suggested to range from 0.29 to 15.21 Mg C ha−1 yr−1

within AFS [166]. Luedeling et al. [30] compiled C sequestration rates of AFS located in Mozambique,
Zambia and Tanzania (on sites with mean annual rainfall ranges from 500 to 1200 mm) and found
values ranging from 0.22 to 5.8 Mg C ha−1 yr−1; rotational woodlots stored more C than other AFS
in the studied regions. Ma et al. [167] in a global meta-analysis of C storage within AFS reported an
average of 46.1 Mg Ha−1 more C than tree-less land-use systems with systems consisting of multiple
tree species storing a higher C in their collective biomass.
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Luedeling et al. [30] assembled information on the biophysical, technical, economic and practical
potential of AFS to sequester C in Africa. For southern Africa, west African Sahel, and east Africa,
they concluded that the existing data contributes for the assessment of the biophysical and technical
capacity of agroecosystems to sequester additional C. Nevertheless, important aspects of C sequestration
were not yet adequately investigated (i.e., soil C levels before and after AFS practices), and estimates of
the associated economic potential were only available for few locations. In addition to present and
future C storage potential, previous land use (e.g., clearance of forest for cropland or AFS) must be
acknowledged and C losses accounted for (cf. [142]). Equally, the quantity of C conserved through
the protection of existing forests, by the inclusion of trees in tree-less landscapes and reduction of
pressure to forest resources, as opposed to the clearance of forests, can also be credited to the adoption
of AFS [9].

Woodlots of drought-tolerant eucalyptus (Eucalyptus spp.) showed that high growth rates can
be achieved also in harsh environments, as, for example, along the South African west coast, which
receives an annual precipitation ranging from 230 to 420 mm [168]. Here, annual volume increments of
7 and 16 m3 ha−1 are reported coupled with high basic wood densities that ranged between 550 and
860 kg m−3, depending on the species [169,170]. Biomass production in such systems can be considered
high [171], as is C sequestration. Calculations based on the results of such findings above show that
around 1.9–6.8 C Mg ha−1 are incrementally sequestered each year in the eucalyptus stem wood alone
during the lifetime of the plantation. Several studies have also shown that poles and valuable timber for
several purposes can be produced from woodlots [169,170], which might leverage the C sequestration
additionally through long term C capture and storage in products and substitution effects.

C storage projects are promoting advanced and sustainable AFS practices for recovering and/or
establishing forests, planting trees within farmlands, and have potential to stimulate adoption of
young farmers, due to the expected fast and long-term financial return [172,173]. The Gorongosa
carbon sequestration project in Mozambique included the planting of tree species such as mango
(Mangifera indica l.) and cashew (Anacardium occidentale l.) orchards to generate food and revenue;
woodlots with siris (Albizia lebbeck (l.) Benth.), and African mahogany (Khaya nyasica (Welw.) C.DC.) to
support charcoal production and timber requirements, intercropping with Faidherbia, soil fertilisation
and thus raising crop yields [173]. In Mozambique, the rural annual consumption of hard fuel
equals approximately 60–70% of the national sum, which in turn represents annual consumption per
household of 0.9–1.0 m3, with potential to escalate due to demographic growth [174].

Charcoal production utilising non-sustainable hard fuel supplies is prevalent in many rural areas
and city suburbs in southern Africa due to lack of implementation of appropriate fuelwood approach.
The inclusion of an AFS management system can provide a substitution effect [175]. A multipurpose
AFS practice can be included within existing land-use systems by including fast growing fuelwood
trees and through the use of improved kilns and cooking stoves. In this way, it can positively provide
a reduction in required cooking energy, pressure on natural forests and an improvement of farm
sustainability with extra income source to rural households through the trading of charcoal and fire
wood [175–177]. While AFS may already significantly contribute to global C budgets, rigorous and
consistent procedures to measure the extent of C sequestration in AFS are required because of the
integrated nature of AFS and the lack of specific data for areas under this land-use type [53]. AFS
research must be addressed by including an accurate description of methods and procedures applied,
such as sampling schemes, analytical details and computational methods, rather than only results.

Handavu et al. [178], reviewing concepts of C dynamics and assessment in the Miombo woodlands
of southern Africa, drew awareness to the remaining challenge of quantifying forest C, highlighting
knowledge gaps and methodological challenges. Considering the inherent spatial heterogeneity of the
landscapes in the region, varying stand density, land-use and land-cover change story, the development
of widely applicable biomass models will require detailed biomass assessments. Accurate assessment
of C in living biomass and information on wood C content from a wide range of species are needed to
inform the final C accounting, as trees in forests or AFS.
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Assessment of aboveground C stock is directly derived from destructive measurements of tree
aboveground biomass (AGB). The understanding of the role of forests in sequestering C is proved
by various allometric equations developed for different forest types in southern Africa [179–182] and
species-specific equations, even though many regions and vegetation types were never or have been
rather poorly addressed [181,183]. Efforts in developing allometric equations specific to trees growing
in AFS are largely missing.

For the estimation of tree AGB, a credible alternative to destructive approaches is the use of
terrestrial laser scanners (TLS) in combination with Quantitative Structural Models (QSM; [184,
185]). Although this methodology has been often applied on forests in different countries [186–188],
its application on trees growing in AFS [67,185,189] and its application in southern Africa are confined
to few studies (e.g., [190]).

The soil C pool has been reported as being three times as large as the atmospheric C pool, and is
of particular importance in the global C cycle [191–193]. Sequestration of CO2 from the atmosphere
into the SOM (of which soil SOC is a component) with only slow turnover is a promising strategy for
climate change mitigation [103]. Adoption of AFS and implementation of key agroforestry practices
are heralded as an accepted strategy for C capture and long-term C storage in soils [119,194,195].
Estimates of C storage potentials and C sequestration rates of soils vary widely and are frequently
not based on analytical evidence [196]. As an example, an estimated 1.1 to 2.2 Pg of atmospheric C
could be stored with a worldwide implementation of AFS in a 50-year period [197]. However, there is
little data available on accurate C sequestration potentials of soils, showing it as depending on land
management and site conditions [198].

Most existing models on SOM dynamics assume that C storage is linear to C input, namely quantity
and quality of biomass. But C sequestration capacity is even more determined by physicochemical
soil properties [115] and site-specific soil minerals and their binding places [117]. Due to stabilisation
mechanisms within the soil, C is protected against decomposition [199]. Different SOM fractions are
characterised by their stability against degradation processes [192]. Changes of land-use practices and
associated changes in composition and amount of residue material affect not only quantity but also
quality of sequestered C within the SOM fractions [200,201]. It has been suggested that AFS as land-use
systems have the largest potential to increase the SOM pool in SSA [119]. But detecting these changes
often takes decades due to relatively minor alterations at large background C stocks [202]. Thus,
long-term observations to measure the effects of AFS over long periods of time and under different
site conditions are of utmost importance. Nair et al. [166] proposed that, in general, belowground
storage of C (up to 1 m in depth) within AFS could total 30 to 300 Mg C ha−1. In southern Africa,
very few long-term documented AFS experiments exist and results are difficult to reproduce [203];
existing data on sequestration rates in different African AFS varies considerably (e.g., [30]). In SSA,
tree intercropping systems have the highest potential to sequester C (1.5 to 3.0 Mg C ha−1 yr−1),
followed by silvopastoral systems (1.0 to 2–5 Mg C ha−1 yr−1) and protective systems like shelter
belts (0.4 to 1.0 Mg C ha−1 yr−1). All estimates are highly variable, depending on agroecological
distribution [2]; nevertheless, a conversion of cropland to AFS has the potential to increase SOC [167].
More research is needed in order to get consistent and reliable data [53]. Apart from fixing C, SOM
is a key element for physical and chemical soil fertility in providing more stable soil structure and
improved nutrient status [204], thereby decreasing susceptibility to erosion, improving water storage
capacity and increasing soil fertility [205], while also improving adaptation of such systems to erratic
and altered rainfall patterns [206].

4.9. Enhanced Provisioning Capacity

The human population in southern Africa is inextricably linked to available woodland resources
due to the provisioning services that include food safety net, health and energy. Traditional AFS
are shown to fulfil this role better than normal agricultural systems. AFS has the potential to
provide multiple NWFP as a form of semi-wild or cultivated produce aside from the crop actively
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promoted [18,207]. NWFP derived from the woodlands and forests of southern Africa play an important
role in the livelihood of people by providing a range of products for subsistence consumption and
trade. These include medicinal plants, exudates, forage, bee products, edible plants, woodcrafts,
mushrooms and bush meat [138,158]. Climate variability, poverty and other factors have increased
the reliance on NWFP for a large number of people. In the developing world, an estimated 80% of
the population use traditional medicines for their primary healthcare needs [208]. The availability of
NWFP serves as an important gap-filler or safety-net when food stocks are low [106,207], as a means of
dietary supplementation [209,210] and also as a source of income [32]. Miombo species whose fruits
are widely marketed throughout the ecoregion include Uapaca kirkiana Müll. Arg., Azanza garckeana
(F.Hoffm.) Exell & Hillc., Sclerocarya birrea (A.Rich.) Hochst. and Strychnos cocculoides Baker [211].
Harvesting Miombo indigenous fruits from the wild and semi-domesticated trees growing on-farm
can substantially boost rural income and create employment [9,32]; however, additional research
efforts should be devoted to the beneficial substitution effects of food production within AFS vs.
wild-collected NWFP.

4.10. Improved Rural Livelihoods via Policy and Institutional Instruments

The past four decades have witnessed concerted global efforts to promote AFS as part of the
solutions for landscape management, secure food production and improving the livelihoods of mostly
rural populations [212]. Despite the scientifically attested potential of AFS [23], the economic and
political contexts of many SSA countries render targeted policy approaches even more difficult.
Barriers to successful AFS at a local level are not only imposed by climatic and ecological conditions,
yet also depend on a continued, often state-supported, focus on monoculture food production,
industrial agricultural crops and mechanised farming. In some regions, the administrative barriers for
establishing AFS are significant, especially when linked to complex land ownership arrangements and
land tenure issues.

Largely, the development of AFS is constrained by legal, policy and institutional arrangements.
AFS receives limited policy and institutional support as it is rarely formally recognised as a priority in
national development plans, policies and land management strategies [55]. Additionally, AFS as a
concept lacks an institutional home and exists within a number of policy fields. These sectors do not
necessarily share a common agenda with sometimes contradictory strategies, hence the prominence of
incoherent and conflicting policy regimes, which have an impact on AFS implementation [15,16,18].
To stress the importance of policies and institutions, Place and Dewees [213] assert that policies play a
crucial role in either incentivising or and disincentivising farmers to invest in AFS. The existence of
supportive policy and institutional arrangements is critical for the removal of barriers to necessitate
upscaling, adoption and implementation of AFS innovations. Clear policies by the government are
a necessary pre-condition for AFS to be adopted with the consequent benefits to individual farmers
and rural communities [214]. According to Fones-Sundell and Teklehaimanot [215], policies can only
be established if the government recognises AFS as an important land-use practice. Only then can
incentives be made for adoption of such a longer-term investment over and above the annual returns
received for agricultural cropping.

Ndlovu and Borrass [216] note that “the reframing of AFS in influential global political discourses
is influencing a change in advancing AFS programmes from a policy and institutional perspective
in different national contexts”. AFS is discussed in global political processes such as the United
Nations Framework Convention on Climate Change (UNFCCC) [13] and the SDGs [3,17,217]. In
the SADC region, there are examples of countries which have included AFS in different sectoral
programmes. For instance, South Africa adopted an AFS strategy which stresses the importance of
creating and enabling an institutional and governmental framework for AFS. Zimbabwe’s draft forest
policy emphasises the importance of AFS, whilst in Malawi, the agricultural policy and National
Land Resources Management Strategy discusses AFS at length and hosts a dedicated department for
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the implementation of AFS. Malawi, Zambia, Eswatini, Zimbabwe have co-opted AFS as part of the
strategies to achieve their nationally determined contributions under the auspices of the UNFCCC [216].

5. Future Prospects

As shown, AFS can be an effective means to mitigate and adapt agricultural systems to climate
change as well as providing enhancement to food security and local employment [15,23]. Such systems
are a far more stable and long-term solution to meet environmental and socio-economic needs in
southern Africa in lieu of monocropping, livestock rearing or other less sustainable activities. Following
the conceptual idea of plant community mixtures proposed by Harper [218], thereafter adopted and
refined describing forest stand mixtures by Bauhus et al. [219], Figure 3 depicts land-use system
replacement series applied to a conceptual and vastly simplified two-component AFS. Within such a
conceptual example, the density of the AFS tree component is the same as in the monoculture cropping
system and always summing to 100%. The following figure describes four scenarios (a–d) where
one system component is gradually replaced by the other towards either full forest cover or pure
agricultural cropping. In the given example, it is assumed that the agricultural crop is more productive
than the tree culture.
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Figure 3. Different effects of mixing agricultural crops and trees in agroforestry systems on the total
productivity of the land-use system (solid line) and the individual productivities of the participating
agricultural crops and the trees (dotted/orange and dashed/green lines, respectively). The figure shows
four scenarios (a–d) where one system component is gradually replaced by the other towards full forest
cover or pure agricultural cropping; full analysis is given in the text. (After [218]).

Four simplified AFS scenarios (independent of external variables such as climate and site
characteristics) can be described combining trees with crops within AFS, following a modified
description originally presented by Bauhus et al. [219]:

(a) The proportion of trees decreases at the same linear rate as that of agricultural crop increase.
There is no interaction between the two AFS components. The effects of the inter-system
competition (competition between the two systems) and the intra-system competition (within
the two systems) are equal. Total productivity of this scenario results in an additive effect of the
productivities of the individual components. This scenario is unlikely, as the interaction effect
between trees and crops is generally proven to provide an influence on growth for one or more
components of the system.
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(b) The change in component proportion is non-linear. The agricultural crop benefits from the
interaction, for example, by means of facilitation or competitive reduction factors. The intra-system
competition for the agricultural crop is higher than the inter-system competition with the tree
culture; the reverse applies to the tree culture. However, these effects compensate each other so
that the net effect of the combination is additive and equal to scenario a.

(c) Interactions between the two land-use systems are incompatible, decreasing proportion of one
AFS component results in an opportunistic increase in the other. Intra-system competition is high,
leading to an under-yielding scenario. This may be reflected by incompatible species choice or
an influence of a biased management of individual components.

(d) Interactions between the two land-use systems are synergistic or mutualistic and non-linear, a
combination of components provides an increased yield. Intra-system competition is higher
than inter-system competition for both systems. This may result from facilitation, competitive
reduction, and/or niche complementarity of both agricultural crops and trees (agricultural crops
and trees utilising different soil resources). This leads to over-yielding at the level of the mixture
and is the scenario that is most often touted as a benefit of AFS (i.e., increased land equivalent
ratio (LER), cf. [220]).

Such a simplistic view, however, does not reflect the complexities of the interactions that occur
within AFS. Figure 4 demonstrates the yield potentials and yield gaps between agricultural production
systems and AFS after the work of Ittersum and Rabbinge [221]. This conceptional description
highlights actual, achievable and experimental yields in comparison with a potential which is limited
by growth-defining factors which include temperature, CO2, available solar radiation, plant physiology
and plant phenology. Such a potential is modified by growth-limiting factors such as water and
nutrients, growth-reducing factors such as biotic (e.g., weeds, diseases, pests) and abiotic (e.g., drought,
storm) influences, and also highlights a so-called experimental yield gap which accounts for yield
differences between field trials and practice, an important aspect to consider in order to bridge the
science-praxis knowledge gap.

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 32 

and is the scenario that is most often touted as a benefit of AFS (i.e., increased land equivalent 

ratio (LER), cf. [220]). 

Such a simplistic view, however, does not reflect the complexities of the interactions that occur 

within AFS. Figure 4 demonstrates the yield potentials and yield gaps between agricultural 

production systems and AFS after the work of Ittersum and Rabbinge ([221]). This conceptional 

description highlights actual, achievable and experimental yields in comparison with a potential 

which is limited by growth-defining factors which include temperature, CO2, available solar 

radiation, plant physiology and plant phenology. Such a potential is modified by growth-limiting 

factors such as water and nutrients, growth-reducing factors such as biotic (e.g., weeds, diseases, 

pests) and abiotic (e.g., drought, storm) influences, and also highlights a so-called experimental yield 

gap which accounts for yield differences between field trials and practice, an important aspect to 

consider in order to bridge the science-praxis knowledge gap. 

 

Figure 4. Yield potentials and yield gaps and relationships among yield levels and growth-defining, 

growth-limiting and growth-reducing factors, and yield-increasing and yield-protecting measures 

(after [221]). 

It is at the praxis level, i.e., AFS “in the wild”, that such conceptual models must be tested and 

modified to provide elevated productivity over simple agricultural production methods accounting 

for species mixture (Figure 3) and for limiting or reducing factors that prevent the full potential of 

AFS being realised (Figure 4). This is especially important within the southern African region where 

the effects of predicted climate change are multifaceted and far reaching, and are suggested to hit 

southern African communities hardest. The predicted instances of decreased rainfall can lead to loss 

of crops and land degradation and represent a real and serious growth reduction factor. Increased 

frequency and severity of extreme weather events can also affect the viability of crops, can bring 

disruption and loss of profitability widening the gap between actual, achievable and potential yield 

(Figure 4). As discussed in the sections above, the increased support and employment of AFS within 

southern Africa can help increase sustainability and resilience of smallholder farmers, brought about 

by integrating the benefits of suitable multipurpose tree and shrub species and adequate AFS 

practices to existing subsistence farming systems. It is not just subsistence farms either; the 

Figure 4. Yield potentials and yield gaps and relationships among yield levels and growth-defining,
growth-limiting and growth-reducing factors, and yield-increasing and yield-protecting measures
(after [221]).



Sustainability 2020, 12, 6796 18 of 31

It is at the praxis level, i.e., AFS “in the wild”, that such conceptual models must be tested and
modified to provide elevated productivity over simple agricultural production methods accounting
for species mixture (Figure 3) and for limiting or reducing factors that prevent the full potential of
AFS being realised (Figure 4). This is especially important within the southern African region where
the effects of predicted climate change are multifaceted and far reaching, and are suggested to hit
southern African communities hardest. The predicted instances of decreased rainfall can lead to loss
of crops and land degradation and represent a real and serious growth reduction factor. Increased
frequency and severity of extreme weather events can also affect the viability of crops, can bring
disruption and loss of profitability widening the gap between actual, achievable and potential yield
(Figure 4). As discussed in the sections above, the increased support and employment of AFS within
southern Africa can help increase sustainability and resilience of smallholder farmers, brought about
by integrating the benefits of suitable multipurpose tree and shrub species and adequate AFS practices
to existing subsistence farming systems. It is not just subsistence farms either; the integration of trees
within general agricultural practices can boost the productivity of the land and thus the economy of an
area, providing employment, security and prosperity, laterally reducing investment risks supplying
supplementary food and a variety of raw materials to trade a benefit that can also filter down and
benefit individuals within the community.

The use of trees as rows, clumps, windbreaks or as woodlots within the farmed landscape can alter
the microclimate through shade and wind reduction. In addition, advantages against wind and water
erosion with water retention within the fields have been frequently suggested, thus providing a more
suitable and stable environment for cropping activities and ecosystem service provision [23]. Such
characteristically diverse functions of AFS can also increase the resistance and resilience of farmed
landscapes (cf. [1,21]); increasing crop yield due to provision of better soil nutrition, plant pollination,
pest control and risk reduction can be achieved with an appropriate tree crop combination (Figure 3).

Nevertheless, AFS can (and must) be complementary to other existing land uses. It would be hard
to introduce a competing land-use system to local stakeholders who are already accustomed to a certain
lifestyle and source of income; likewise, it must be compatible and complimentary with the natural
ecosystem it is placed within. Proposed approaches such as “analog forestry” may also find suitable
application in the region [222]. The African Union has recently called for increases in farmer-managed
natural regeneration of trees within farmland [223], and capacity building with the education of
farmers about the benefits of incorporating trees and AFS without significantly interrupting the existing
systems in place is an important implementation tool [222]. Key to the long-term success of AFS is a
well-established and functional information infrastructure, as well as long-term monitoring programs
to provide “on-the-ground” experience or “bottom-up” participation as a means of increasing resilient
cropping potential supporting rural livelihoods, increasing food security and intensifying resilience
against climate change threats [1,17,18]. Walker et al. [224] suggest that a successful adoption of
sustainable AFS should be led by social and traditional knowledge, as most AFS practices are related
and stem from traditional cultivation systems. The implementation of such AFS initiatives allows rural
communities to access extension services with ultimate technological approaches as improved genetic
material, advanced techniques on plant propagation, promote market-oriented production, facilitate
access to the international carbon market, promote community associativism and the provision of
equipment, or simply provide access to seed and basic knowledge to equip farmers with the know-how
and perspective needed to grow and manage trees. Nevertheless, experiences show that long-term
adoption of sustainable practices has the potential to fail if it is not attractive and the benefits are not
immediately visible, in particular for younger farmers. The same is true if new ideas do not align with
traditional viewpoints, farmers’ needs and agro-ecological specificities [175,224]. Likewise, the issue of
land tenure and land ownership often influences the adoption of agroforestry practices, those with
customary rights are less likely to implement and invest in some form of sustainable agricultural
practice [225] such as AFS when they do not have long-term land tenure security.
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Lack of multi-sectorial partnerships and empowering of local NGOs is perceived as one of the
weaknesses within AFS research, dissemination and sustainability. Despite the increasing engagement
of scientific literature with AFS, research on the topic remains very much applied at a praxis level.
It does not aim at a fully developed, coherent theoretical interest in policies and institutions. While
natural scientists and practitioners laud the concept and attach substantial potential to it [23], the social,
political, and institutional dimensions remain very much understudied [18]. This does not prevent
scientific articles from presenting social scientific claims, nor does it deter the definition of institutional
prerequisites for implementation or adoption of AFS. This finding indicates a gap in the scientific
literature with regard to a thorough and comprehensive analysis of aspects of policy and institutions.
The absence of policies targeting AFS, and thus the persisting absence of institutionalisation of
AFS practices as the overwhelming problem, requires contextualisation. Focus on AFS from large
international organisations presenting a unified approach, such as that heralded by the recently formed
CIFOR-ICRAF merger, has the potential to bring about transformative multidisciplinary strategies that
function on multiple levels [29].

While AFS research and development have made great strides in the last three decades in
southern African countries, many gaps remain (Table 1). Efforts should be directed towards tackling
individual issues and local differences on the composition and management of particular AFS that
are suited to individual circumstances. Innovation should be sought to alleviate known pressures
on natural ecosystems such as the provision of fuelwood or charcoal [226]. AFS should not be
viewed as a one-size-fits-all standardised solution (cf. Figure 3), but rather a recipe with many
ingredients that can be individually applied to bake the cake that is appropriate for the occasion.
The foreseen scaling-up of AFS in the southern African region for enhanced agricultural productivity,
profitability and sustainability improving livelihoods of rural people across the region is already a
reality. The diffusion and adaptation of AFS technologies has occurred, through farmer-to-farmer
networks, and through NGO-led projects that spotlight alternative technologies and provide support
for farmer learning in the region. We echo and confirm the conclusion of Kwesiga et al. [28] who
optimistically assert that AFS has the potential to achieve the compound goals of poverty alleviation
and increased food security while facilitating global environmental protection in the face of the diverse
challenges troubling the southern African region. AFS remains an appropriate and sustainable response
in our toolbox for an increased resilience against a changing climate in southern Africa for the benefit
of livelihoods and environmental values.
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Table 1. Identified knowledge gaps and potential solutions within the study of southern African AFS.

Knowledge Gaps Relevant for AFS in Southern Africa Possible Solutions

Ecosystem Services, Provisioning, Carbon Accounting and Integrated Fire Management

Interplay between biodiversity types and land-use strategy Examination with appropriate methodology, e.g., ecosystem-based management approach.

Threats presented by non-native trees Ecology and distribution of non-native trees. Case studies.

AFS influence on pest populations Observational and experimental exploration of bottom-up and top-down influence of AFS on pest
populations, relationships between tree cover, food webs and pest suppression.

Crop-pest modelling tools do not account for AFS’ complexity Data collection on both focused AFS and broad indications for common applications.

Benefits of AFS produced NWFP vs. wild harvesting Case study and experimental explorations of impacts of sustainable wild harvesting and AFS substitution.

Extent of carbon sequestration potential in AFS Landscape level estimations of AFS utilisation, species mixture and applied management, coupled with
biomass studies and modelling activities.

Allometric functions relevant for trees utilised in AFS Sampling and development of allometric functions for appropriate species.

Minimal data available for carbon storage potential dependent on land management and site
conditions

Plot and landscape level modelling, use of LiDAR technology. Empirical studies. Biomass modelling.
Long-term observations of carbon dynamics.

Low levels of information on fuels and fire behaviour in AFS Dedicated studies on fuel types and fuel loading and its dynamics over time in AFS.

Tree-Crop-Site Interactions

Shelterbelt/tree spatial arrangements within AFS, crop selection and combinations Measurement of existing systems, modelling and extrapolation (e.g., wind loading of trees; cf. [227]).

Competition vs. facilitation (e.g., light and water) Modelling utilising empirical shading measurements and tree parameters in relation to ecophysiological
shade tolerance (i.e., tree-crop water use, 3D-based approach; [67]).

Shading effects and benefits provided by AFS Observational and experimental research into combinations and suitability of crops for usage in AFS.

Effects of nitrogen-fixing species Experimental methodology, ecophysiological measurements. Cultivation of different tree species under
different climatic and site conditions [3].

Low data availability on water retention studies and plant-plant soil water flow Detailed throughflow measurements in combination with plant-plant water transfer (e.g., [85]) with
soil/structure type referencing.

Evaluation of species combination, soils and management practices for different regions Disentangling the various influences (case studies in different systems with clear designs regarding species
combination, soils and management practices).

Low data availability on erosion control and soil conservation in AFS Experimental quantification of erosion and deposition in relation to land use, soil types, terrain and climate.
Research on aggregate formation [53] to assess site-specific erosion risk.

Political, Social and Economic Issues

Lack of institutional home, mis-aligned policy agendas Closer cooperation and communication between government, research and NGOs.

Impact of AFS on rural livelihoods Further scrutiny of impact of AFS on the improvement of food security, employment and resilience issues
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