2,325 research outputs found

    Handcrafted and learning-based tie point features-comparison using the EuroSDR RPAS benchmark datasets

    Get PDF
    The identification of accurate and reliable image correspondences is fundamental for Structure-from-Motion (SfM) photogrammetry. Alongside handcrafted detectors and descriptors, recent machine learning-based approaches have shown promising results for tie point extraction, demonstrating matching success under strong perspective and illumination changes, and a general increase of tie point multiplicity. Recently, several methods based on convolutional neural networks (CNN) have been proposed, but few tests have yet been performed under real photogrammetric applications and, in particular, on full resolution aerial and RPAS image blocks that require rotationally invariant features. The research reported here compares two handcrafted (Metashape local features and RootSIFT) and two learning-based methods (LFNet and Key.Net) using the previously unused EuroSDR RPAS benchmark datasets. Analysis is conducted with DJI Zenmuse P1 imagery acquired at Wards Hill quarry in Northumberland, UK. The research firstly extracts keypoints using the aforementioned methods, before importing them into COLMAP for incremental reconstruction. The image coordinates of signalised ground control points (GCPs) and independent checkpoints (CPs) are automatically detected using an OpenCV algorithm, and then triangulated for comparison with accurate geometric ground-truth. The tests showed that learning-based local features are capable of outperforming traditional methods in terms of geometric accuracy, but several issues remain: few deep learning local features are trained to be rotation invariant, significant computational resources are required for large format imagery, and poor performance emerged in cases of repetitive patterns

    Mobility induces global synchronization of oscillators in periodic extended systems

    Get PDF
    We study synchronization of locally coupled noisy phase oscillators which move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits several wave-like states which display local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical spatial diffusion above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by the relative size of attractor basins associated to wave-like states. Spatial diffusion disrupts these states and paves the way for the system to attain global synchronization

    The AGN nature of 11 out of 12 Swift/RXTE unidentified sources through optical and X-ray spectroscopy

    Full text link
    The Swift Burst Alert Telescope (BAT) is performing a high Galactic latitude survey in the 14-195 keV band at a flux limit of ~10^{-11} erg cm^{-2} s^{-1}, leading to the discovery of new high energy sources, most of which have not so far been properly classified. A similar work has also been performed with the RXTE slew survey leading to the discovery of 68 sources detected above 8 keV, many of which are still unclassified. Follow-up observations with the Swift X-ray Telescope (XRT) provide, for many of these objects, source localization with a positional accuracy of few arcsec, thus allowing the search for optical counterparts to be more efficient and reliable. We present the results of optical/X-ray follow-up studies of 11 Swift BAT detections and one AGN detected in the RXTE Slew Survey, aimed at identifying their counterparts and at assessing their nature. These data allowed, for the first time, the optical classification of 8 objects and a distance determination for 3 of them. For another object, a more refined optical classification than that available in the literature is also provided. For the remaining sources, optical spectroscopy provides a characterization of the source near in time to the X-ray measurement. The sample consists of 6 Seyfert 2 galaxies, 5 Seyferts of intermediate type 1.2-1.8, and one object of Galactic nature - an Intermediate Polar (i.e., magnetic) Cataclysmic Variable. Out of the 11 AGNs, 8 (~70%) including 2 Seyferts of type 1.2 and 1.5, are absorbed with NH > 10^{22} cm^{-2}. Up to 3 objects could be Compton thick (i.e. NH > 1.5 x 10^{24} cm^{-2}), but only in one case (Swift J0609.1-8636) does all the observational evidence strongly suggests this possibility.Comment: 50 pages, including 16 figures and 7 tables. Accepted for publication in Ap

    Magnon Heat Transport in doped La2CuO4\rm La_2CuO_4

    Full text link
    We present results of the thermal conductivity of La2CuO4\rm La_2CuO_4 and La1.8Eu0.2CuO4\rm La_{1.8}Eu_{0.2}CuO_4 single-crystals which represent model systems for the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice. We find large anisotropies of the thermal conductivity, which are explained in terms of two-dimensional heat conduction by magnons within the CuO2_2 planes. Non-magnetic Zn substituted for Cu gradually suppresses this magnon thermal conductivity Îşmag\kappa_{\mathrm{mag}}. A semiclassical analysis of Îşmag\kappa_{\mathrm{mag}} is shown to yield a magnon mean free path which scales linearly with the reciprocal concentration of Zn-ions.Comment: 4 pages, 3 figure

    Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection

    Get PDF
    Background. Clostridioides difficile infection (CDI) might be complicated by the development of nosocomial bloodstream infection (n-BSI). Based on the hypothesis that alteration of the normal gut integrity is present during CDI, we evaluated markers of microbial translocation, inflammation, and intestinal damage in patients with CDI. Methods. Patients with documented CDI were enrolled in the study. For each subject, plasma samples were collected at T0 and T1 (before and after CDI therapy, respectively), and the following markers were evaluated: lipopolysaccharide-binding protein (LPB), EndoCab IgM, interleukin-6, intestinal fatty acid binding protein (I-FABP). Samples from nonhospitalized healthy controls were also included. The study population was divided into BSI+/BSI- and fecal microbiota transplantation (FMT) +/FMT- groups, according to the development of n-BSI and the receipt of FMT, respectively. Results. Overall, 45 subjects were included; 8 (17.7%) developed primary n-BSI. Markers of microbial translocation and intestinal damage significantly decreased between T0 and T1, however, without reaching values similar to controls (P < .0001). Compared with BSI-, a persistent high level of microbial translocation in the BSI+ group was observed. In the FMT+ group, markers of microbial translocation and inflammation at T1 tended to reach control values. Conclusions. CDI is associated with high levels of microbial translocation, inflammation, and intestinal damage, which are still present at clinical resolution of CDI. The role of residual mucosal perturbation and persistence of intestinal cell damage in the development of n-BSI following CDI, as well as the possible effect of FMT in the restoration of mucosal integrity, should be further investigated

    GARFIELD + RCo Digital Upgrade: a Modern Set-up for Mass and Charge Identification of Heavy Ion Reaction Products

    Full text link
    An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On one side fast sampling digital read out has been extended to all detectors, allowing for an important simplification of the signal processing chain together with an enriched extracted information. On the other side a relevant improvement has been made in the forward part of the setup (RCo): an increased granularity of the CsI(Tl) crystals and a higher homogeneity in the silicon detector resistivity. The renewed performances of the GARFIELD + RCo array make it suitable for nuclear reaction measurements both with stable and with Radioactive Ion Beams (RIB), like the ones foreseen for the SPES facility, where the Physics of Isospin can be studied.Comment: 13 pages, 19 figures - paper submitted to Eur. Phys. J.

    Synchronization of Coupled Systems with Spatiotemporal Chaos

    Full text link
    We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev. {\bf 58 E}, R8 (1998)), is generically in the directed percolation universality class. In particular, this holds numerically for the specific example studied by these authors, in contrast to their claim. For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchronization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.

    Low thermal conductivity of the layered oxide (Na,Ca)Co_2O_4: Another example of a phonon glass and an electron crystal

    Full text link
    The thermal conductivity of polycrystalline samples of (Na,Ca)Co_2O_4 is found to be unusually low, 20 mW/cmK at 280 K. On the assumption of the Wiedemann-Franz law, the lattice thermal conductivity is estimated to be 18 mW/cmK at 280 K, and it does not change appreciably with the substitution of Ca for Na. A quantitative analysis has revealed that the phonon mean free path is comparable with the lattice parameters, where the point-defect scattering plays an important role. Electronically the same samples show a metallic conduction down to 4.2 K, which strongly suggests that NaCo_2O_4 exhibits a glass-like poor thermal conduction together with a metal-like good electrical conduction. The present study further suggests that a strongly correlated system with layered structure can act as a material of a phonon glass and an electron crystal.Comment: 5 pages 3 figures, to be published in Phys. Rev.
    • …
    corecore