44 research outputs found

    Stratégies d'introduction d'organismes dans un environnement spatialement structuré

    Get PDF
    Establishment is an important stage of biological invasions, which corresponds to the formation of a persistent population in the introduction area. It is not trivial, as introduced populations are often small, and subject to various specific mechanisms, which increase extinction risks. The spatial structure of the introduction area, which is usually a heterogeneous mosaic of habitat patches called a “landscape”, can interact with those mechanisms and impact the introduced population persistence. This thesis objective is to study the interaction between this spatial structure and those mechanisms, as well as their impact on establishment. On the one hand, we used stochastic models to simulate invasions and formulate predictions. On the other hand, we tested these predictions by performing artificial introductions of Trichogramma chilonis in laboratory microcosms. We were able to identify the impact of the introduction site connectivity, which could decrease establishment probabilities at a local level by increasing the emigration rate from the introduction site, and increase establishment at the landscape level by increasing the colonisation rate of other patches in the introduction area. At the landscape level, we identified the impact of hubs, i.e. patches concentrating dispersal fluxes. They strongly increased colonisation speed, but also decreased establishment. The clustering of resources increased establishment, while its scattering increased colonization. Our results show that introduced population dynamics are highly sensitive to their size. The stochastic nature of colonization dynamics is also necessary to study establishment.L’établissement correspond Ă  la formation d’une population pĂ©renne dans l’aire d’introduction. Les populations introduites ayant des effectifs faibles, elles sont sujettes Ă  plusieurs mĂ©canismes augmentant leurs risques d’extinction. La structure spatiale de l’aire d’introduction, une mosaĂŻque hĂ©tĂ©rogĂšne de patchs d’habitat appelĂ©e « paysage », peut affecter la persistance de la population introduite. L’objectif de cette thĂšse est d’étudier l’interaction entre cette structure spatiale et ces mĂ©canismes, ainsi que leur impact sur l’établissement. Les recherches entreprises ont Ă©tĂ© conduites en utilisant des modĂšles stochastiques afin de simuler des invasions et faire Ă©merger des prĂ©dictions, et en testant expĂ©rimentalement ces prĂ©dictions grĂące Ă  des introductions artificielles de Trichogramma chilonis en microcosmes. Ces travaux ont permis d’identifier un effet fort de la connectivitĂ© du site d’introduction, qui peut diminuer les chances d’établissement au niveau local en favorisant l’émigration depuis le site d’introduction, et augmenter les chances d’établissement Ă  un niveau plus large en permettant la colonisation d’autres patchs dans l’aire d’introduction. Au niveau du paysage, nous avons identifiĂ© l’impact des hubs, des patchs concentrant les flux de dispersion, qui accroissent fortement la vitesse de colonisation mais diminuent le taux d’établissement. L’établissement Ă©tait Ă©galement favorisĂ© par l’agrĂ©gation de la ressource et la colonisation par sa dissĂ©mination Ă  travers le paysage. La nature stochastique des dynamiques de colonisation est telle qu’il est nĂ©cessaire de les prendre en compte pour Ă©tudier l’établissement

    Evidence for an optimal level of connectivity for establishment and colonisation

    Get PDF
    International audienceDispersal is usually associated with the spread of invasive species, but it also has two opposing effects, one decreasing and the other increasing the probability of establishment. Indeed, dispersal both slows population growth at the site of introduction and increases the likelihood of surrounding habitat being colonized. The connectivity of the introduction site is likely to affect dispersal, and, thus, establishment, according to the dispersal behaviour of individuals. Using individual-based models and microcosm experiments on minute wasps, we demonstrated the existence of a hump-shaped relationship between connectivity and establishment in situations in which individual dispersal resembled a diffusion process. These results suggest that there is an optimal level of connectivity for the establishment of introduced populations locally at the site of introduction, and regionally over the whole landscape

    Utilization of microcosms to test invasion biology hypotheses

    Get PDF
    Comprendre les facteurs dĂ©terminant le succĂšs ou l’échec des processus invasifs est un objectif majeur en biologie de l’invasion. De nombreux travaux thĂ©oriques se sont intĂ©ressĂ©s aux composantes Ă©cologiques et Ă©volutives de ces facteurs. Cependant, les tests d’hypothĂšses associĂ©s Ă  une dĂ©marche expĂ©rimentale restent rares. La plupart des rĂ©sultats empiriques sont issus de l’analyse a posteriori d’invasions fortuites et ne permettent donc, au mieux, que des approches corrĂ©latives. Dans cet article, nous discutons de la pertinence des microcosmes, i.e. des environnements simplifiĂ©s, contrĂŽlĂ©s et reproductibles, comme alternatives aux introductions expĂ©rimentales en milieu naturel. En nous basant sur une synthĂšse de la littĂ©rature, nous prĂ©sentons les avantages et limites des approches en microcosmes pour l'Ă©tude des invasions biologiques. Notre analyse se concentre sur les publications impliquant des populations en dynamique transitoire aprĂšs un goulot d’étranglement et/ou soumises Ă  un challenge adaptatif, deux caractĂ©ristiques clĂ©s des processus invasifs. MalgrĂ© le nombre encore rĂ©duit de telles Ă©tudes, leur intĂ©rĂȘt a Ă©tĂ© montrĂ© pour explorer les influences des caractĂ©ristiques de l’aire envahie (les conditions environnementales ainsi que leur hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale ou temporelle). Dans une moindre mesure, les microcosmes ont Ă©galement permis de tester l’influence des caractĂ©ristiques des populations introduites et de la communautĂ© envahie. Cependant, ils doivent ĂȘtre utilisĂ©s avec prĂ©caution car ils ne permettent pas de reproduire la complexitĂ© des milieux naturels. Les expĂ©riences en microcosmes sont donc complĂ©mentaires aux Ă©tudes thĂ©oriques et Ă  celles menĂ©es en populations naturelles et contribuent Ă  renforcer la valeur prĂ©dictive de la biologie de l’invasion en liant thĂ©orie et expĂ©rimentation.Understanding the factors underlying establishment and spread of exotic species in order to predict invasion risks is a major goal in invasion biology. Many theoretical studies investigated the ecological and evolutionary components of these factors and their impact on the invasive process. Yet, hypothesis tests through experimental approaches are still scarce because of the practical and ethical difficulties associated with the introduction of exotic species in nature. Thus, most empirical results come from a posteriori analyses of fortuitous invasions, which allow correlative approaches at best and give no information about invasion failures. In this paper, we propose microcosms, i.e. reproducible controlled simplified environments, as an alternative to experimental introductions in natura. From a review of the literature, we discuss the distinctive features of microcosms to test theoretical predictions about invasion. Our analysis focuses on studies involving populations in transitory dynamics after a demographic bottleneck and/or subject to an adaptive challenge, two key characteristics of invasive processes. Despite their small number, these studies have been used successfully to explore the influences of various factors, mainly related to the introduction site characteristics (its abiotic conditions and their spatial and temporal heterogeneity), and to a lesser extent to the introduced individuals themselves (propagule pressure, genetic diversity and adaptations in the introduced population) or the invaded community. We argue that microcosms, as model systems, can be powerful tools to test theoretical hypotheses. They must however be used with care, as they do not account for the same complexity as natural systems. They are thus complementary to theoretical studies and field surveys, and contribute to reinforce the predictive value of invasion biology by linking theory and experimentation

    Introduction strategies of organisms in a spatially structured environment

    No full text
    L’établissement correspond Ă  la formation d’une population pĂ©renne dans l’aire d’introduction. Les populations introduites ayant des effectifs faibles, elles sont sujettes Ă  plusieurs mĂ©canismes augmentant leurs risques d’extinction. La structure spatiale de l’aire d’introduction, une mosaĂŻque hĂ©tĂ©rogĂšne de patchs d’habitat appelĂ©e « paysage », peut affecter la persistance de la population introduite. L’objectif de cette thĂšse est d’étudier l’interaction entre cette structure spatiale et ces mĂ©canismes, ainsi que leur impact sur l’établissement. Les recherches entreprises ont Ă©tĂ© conduites en utilisant des modĂšles stochastiques afin de simuler des invasions et faire Ă©merger des prĂ©dictions, et en testant expĂ©rimentalement ces prĂ©dictions grĂące Ă  des introductions artificielles de Trichogramma chilonis en microcosmes. Ces travaux ont permis d’identifier un effet fort de la connectivitĂ© du site d’introduction, qui peut diminuer les chances d’établissement au niveau local en favorisant l’émigration depuis le site d’introduction, et augmenter les chances d’établissement Ă  un niveau plus large en permettant la colonisation d’autres patchs dans l’aire d’introduction. Au niveau du paysage, nous avons identifiĂ© l’impact des hubs, des patchs concentrant les flux de dispersion, qui accroissent fortement la vitesse de colonisation mais diminuent le taux d’établissement. L’établissement Ă©tait Ă©galement favorisĂ© par l’agrĂ©gation de la ressource et la colonisation par sa dissĂ©mination Ă  travers le paysage. La nature stochastique des dynamiques de colonisation est telle qu’il est nĂ©cessaire de les prendre en compte pour Ă©tudier l’établissement.Establishment is an important stage of biological invasions, which corresponds to the formation of a persistent population in the introduction area. It is not trivial, as introduced populations are often small, and subject to various specific mechanisms, which increase extinction risks. The spatial structure of the introduction area, which is usually a heterogeneous mosaic of habitat patches called a “landscape”, can interact with those mechanisms and impact the introduced population persistence. This thesis objective is to study the interaction between this spatial structure and those mechanisms, as well as their impact on establishment. On the one hand, we used stochastic models to simulate invasions and formulate predictions. On the other hand, we tested these predictions by performing artificial introductions of Trichogramma chilonis in laboratory microcosms. We were able to identify the impact of the introduction site connectivity, which could decrease establishment probabilities at a local level by increasing the emigration rate from the introduction site, and increase establishment at the landscape level by increasing the colonisation rate of other patches in the introduction area. At the landscape level, we identified the impact of hubs, i.e. patches concentrating dispersal fluxes. They strongly increased colonisation speed, but also decreased establishment. The clustering of resources increased establishment, while its scattering increased colonization. Our results show that introduced population dynamics are highly sensitive to their size. The stochastic nature of colonization dynamics is also necessary to study establishment

    3D Printing for Ecology and Evolution: A Hands-on Guide to Turn an Idea into Reality

    No full text
    3D printing is described as the third industrial revolution: its impact is global in industry and progresses every day in society. It presents a huge potential for ecology and evolution, sciences with a long tradition of inventing and creating objects for research, education and outreach. Its general principle as an additive manufacturing technique is relatively easy to understand: objects are created by adding material layers on top of each other. Although this may seem very straightforward on paper, it is much harder in the real world. Specific knowledge is indeed needed to successfully turn an idea into a real object, because of technical choices and limitations at each step of the implementation. This article aims at helping scientists to jump in the 3D printing revolution, by offering a hands-on guide to current 3D printing technology. We first give a brief overview of uses of 3D printing in ecology and evolution, then review the whole process of object creation, split into three steps: (1) obtaining the digital 3D model of the object of interest, (2) choosing the 3D printing technology and material best adapted to the requirements of its intended use, (3) pre- and post-processing the 3D object. We compare the main technologies available and their pros and cons according to the features and the use of the object to be printed. We give specific and key details in appendices, based on examples in ecology and evolution

    Simulation script

    No full text
    R script used to simulate the invasion data used in the study

    Clustered or scattered? The impact of habitat fragmentation on establishment and early spread

    Get PDF
    International audienceThe match between the environmental conditions of an introduction area and the preferences of an introduced species is the first prerequisite for establishment. Yet, introduction areas are usually landscapes, i.e. heterogeneous sets of habitats that are more or less favourable to the introduced species. Because individuals are able to disperse after their introduction, the quality of the habitat surrounding the introduction site is as critical to the persistence of introduced populations as the quality of the introduction site itself. Moreover, demographic mechanisms such as Allee effects or dispersal mortality can hamper dispersal and affect spread across the landscape, in interaction with the spatial distribution of favourable habitat patches. In this study, we investigate the impact of the spatial distribution of heterogeneous quality habitats on establishment and early spread. First, we simulated introductions in one-dimensional landscapes for different dispersal rates and either dispersal mortality or Allee effects. The landscapes differed by the distribution of favourable and less favourable habitats, which were either clustered into few large aggregates of the same quality or scattered into multiple smaller ones. Second, we tested the predictions of simulations by performing experimental introductions of hymenopteran parasitoids (Trichogramma chilonis) in 'clustered' and 'scattered' microcosm landscapes. Results highlighted two impacts of the clustering of favourable habitat: by decreasing the risks of dispersal from the introduction site to unfavourable habitat early during the invasion, it increased establishment success. However, by increasing the distance between favourable habitat patches, it also hindered the subsequent spread of introduced species over larger areas
    corecore