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Abstract
Finding general patterns in the expansion of natural populations is a major challenge inecology and invasion biology. Classical spatio-temporal models predict that the carryingcapacity (K) of the environment should have no influence on the speed (v) of an ex-panding population. We tested the generality of this statement with reaction-diffusionequations, stochastic individual-based models, and microcosms experiments with Tri-chogramma chilonis wasps. We investigated the dependence between K and v under dif-ferent assumptions: null model (Fisher-KPP-like assumptions), strong Allee effects, andpositive density-dependent dispersal. These approaches led to similar and complemen-tary results. Strong Allee effects, positive density-dependent dispersal and demographicstochasticity in small populations lead to a positive dependence between K and v. Apositive correlation between carrying capacity and propagation speed might be morefrequent than previously expected, and be the rule when individuals at the edge of apopulation range are not able to fully drive the expansion.
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Introduction
A significant acceleration in the rate of introduction of alien species has been observed sincethe 19th century (Seebens et al., 2017). After their establishment, invading species spread byexpanding their range into suitable environment (Blackburn et al., 2011), with sometimes im-portant impacts on agriculture production, biodiversity or human health (Crooks, 2002; Kelleret al., 2011). The need for accurate predictions in order to anticipate range shifts and managepopulations is ever increasing (Hulme, 2009; Schwartz, 2012). Yet this aim has proven difficultto achieve, because propagation speed and expansion patterns are highly variable across popu-lations and depend on many different factors (Hastings et al., 2005; Hui et al., 2011). Studies onintroduced species often show that invasion success is correlated with life-history traits (Gidoinet al., 2015; Kleunen et al., 2011; Moravcova et al., 2010) yet, the properties of the environ-ment also affect expansion patterns. Previous studies have analyzed the impact of habitat qual-ity on expansion. They focused on the variations in the population growth rate across space as aproxy for habitat quality (Kanarek et al., 2008; Mortelliti et al., 2010; Neubert and Caswell, 2000;Shigesada and Kawasaki, 1997). The carrying capacity is another component of habitat quality,thought to be deeply impacting establishment dynamics (Drake and Lodge, 2006; Verbruggenet al., 2013; Vercken et al., 2013) and extinction probability (Belovsky et al., 1999; Griffen and
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Drake, 2008). However carrying capacity has not been investigated in connection with expan-sion speed so far, probably because standard theoretical models predict no relationship betweenthese two quantities. Reaction-diffusionmodels are recognized as robust descriptors of the quali-tative properties ofmany ecological systems (e.g. Gilad et al., 2007; Hastings et al., 2005; Turchin,1998). In such models, the carrying capacity, usually denoted K , is a positive stable equilibriumcorresponding to the maximum population density that can be sustained by the environment atany location x . One of the most classical model is the “Fisher-KPP” model, with a logistic growth
f (u) = r u(1 − u/K) (u being the population density at time t and location x , and r the intrinsicgrowth rate). It has been widely used to describe the spatio-temporal dynamics of expandingpopulations e.g. Shigesada and Kawasaki, 1997, and the references therein. In this model, it iswell-known since the pioneering work of Kolmogorov et al., 1937 that the speed of range expan-sion only depends on the growth function f through the limit of the per capita population growthrate f (u)/u as u → 0, i.e., through f ′(0). This means that the growth of populations with interme-diate densities (u > ε > 0) has no effect on the propagation speed. Thus, expansion is driven byindividuals at small density at the edge of the population range, where intraspecific competitionvanishes. A direct consequence is that the speed of range expansion does not depend on the car-rying capacity K . It is fully determined by the intrinsic growth rate and the diffusion coefficientleading to simple formulas. These formulas have been used to calculate theoretical expansionspeeds for historical datasets on invasive populations (e.g. Holmes, 1993; Van den Bosch et al.,1992). Yet several empirical observations were not consistent with such predictions, in particularin presence of demographic properties like the Allee effect (Liebhold et al., 1992; Neubert andCaswell, 2000; Okubo et al., 1989). In such cases, it appeared that population propagation wasnot entirely driven by individuals at the edge of the range. Thus these propagations could notbe described satisfactorily by the Fisher-KPP model. There are two main reasons why these in-dividuals at the edge of a population range might not be able to fully drive the expansion. Firstly,those individuals do not disperse (Altwegg et al., 2013), or secondly, their growth rate is lim-ited, e.g. due to unfavorable conditions (Jimmy Garnier and Mark A Lewis, 2016; Owen and M ALewis, 2001; Silva et al., 2002), limited reproduction (Austerlitz et al., 2000; Courchamp et al.,2008) or competition (L Roques, Hosono, et al., 2015). In such situations, individuals from high-density areas are involved in the expansion. We could therefore expect a positive relationshipbetween carrying capacity and propagation speed. We investigate this hypothesis by analyzingpropagation dynamics in presence of three factors known to penalize colonization success insmall populations: strong Allee effects, positive density-dependent dispersal and demographicstochasticity. A strong Allee effect induces a negative growth rate for densities lower than somevalue called the Allee threshold. This is widely studied, and observed in some animals as wellas in some plants (Courchamp et al., 2008). It has been associated with reduced spread rates ininvasive populations (Davis et al., 2004; Taylor and Hastings, 2005; Veit and M A Lewis, 1996).Positive density-dependent dispersal consists in an increase of the individual probability to dis-perse when the population density gets larger. Typically this kind of dispersal is supposed toallow organisms to avoid intraspecific competition or sexual harassment for females (Matthy-sen, 2005). This is common in mammals, birds and insects and may slow down rates of rangeexpansion (Travis et al., 2009). Demographic stochasticity is likely to affect all small populationswithout any specific ecological mechanism. When local population size is small, the probabilitythat no individual manages to successfully disperse and reproduce beyond the population rangeis increased, leading to a reduced propagation speed (Brunet and Derrida, 1997; Snyder, 2003).The main objective of this work is to assess whether each of these three factors leads to a de-pendence of the population propagation speed v on K . In order to give more robustness to ourstudy, we base our answers on two complementary modeling frameworks and an experimentalapproach. The first modeling framework is based on reaction-diffusion equations, which havethe advantage of leading to simple formulas connecting K to v . The second modeling frame-work is based on stochastic individual-based simulation models (IBMs). Though less analyticallytractable, these models are often considered as more realistic when dealing with small popula-tion sizes. The experimental study is made on a parasitoid wasp in laboratory microcosms, forwhich we establish that positive density-dependent dispersal occurs.
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1. Material and Method
The next three sections are dedicated to the presentation of the two modeling frameworksand of the experimental study that we use to analyze the dependence between the carryingcapacity and the propagation speed of a range-expanding population. For each modeling frame-work, we begin with a general presentation of the models, followed by a description of the waythe three main scenarios (null model, strong Allee effect, positive density-dependent dispersal)are modeled.

1.1. Reaction-diffusion models .
In one-dimensional reaction-diffusion models, the population density at time t and spatiallocation x is described by a function u(t, x) which satisfies a partial differential equation:

(1) ∂u
∂t (t, x) = ∂2[ϕ(u)u]

∂x2 (t, x) + f (u(t, x)).

The operator ∂2/∂x2 is the 1-dimensional Laplace diffusion operator. It describes uncorrelatedrandom walk movements of the individuals, whose mobility is measured by the diffusion coef-ficient ϕ(u), which may depend on u or not, depending on the presence of density-dependentdispersal. The function f describes local population growth. The state 0 is where the species isnot present, and the state K (carrying capacity) is where the population does not grow locally:
f (0) = f (K ) = 0.The asymptotic propagation speed (or propagation speed, for short) to the right is the onlyspeed v such that any observer who travels to the right – or to the left – with a speed largerthan v will eventually see the population density go to 0, whereas any observer traveling with aspeed slower than v will eventually see the density approach the carrying capacity K . Under theassumptions that are detailed below, when ϕ(u) = D is constant, it is known that the propagationspeed exists and is finite (Aronson and Weinberger, 1975; Fife and McLeod, 1977; Kolmogorovet al., 1937).
1.2. Null model: Fisher-KPP.

We assume a constant diffusion coefficient ϕ(u) = D (density-independent dispersal) and agrowth function f such that the per capita growth rate f (u)/u reaches its maximum r > 0 when
u approaches 0: 0 < f (u) ≤ ru for all u ∈ (0, K ), with r = f ′(0). This means that there is no Alleeeffect. In this case, the propagation speed is (Kolmogorov et al., 1937):
(2) v = 2

√
r D,

and therefore does not depend on K . A typical example is the logistic growth function f (u) =
r u(1 − u/K ).
1.3. Strong Allee effect.

Again, we assume a constant diffusion coefficient ϕ(u) = D. Strong Allee effects are mod-eled by growth functions f (u) that are negative when u is below some threshold ρ > 0 (Alleethreshold), and positive when u is between ρ and K . In this case, propagation can only occur (i.e.,
v > 0) when the average value of f over (0, K) is positive (∫ K

0 f (s) ds > 0). We believe that thestandard form of the function f used e.g. by M A Lewis and Kareiva, 1993 and Turchin, 1998 isnot useful for the purpose of this study. With this functional form,
(3) f (u) = r u (1 − u/K ) (u − ρ),
with K > ρ > 0, the maximum per capita growth rate max

u∈(0,K)
f (u)/u is equal to r(K − ρ)2/(4K).

Thus, increasing K also induces a linear increase in the maximum per capita growth rate. In orderto disentangle the effect of the carrying capacity from the effect of the per capita growth rate,we propose a new form for the growth function f :
(4) f (u) = 4 r K

(K − ρ)2 u (1 − u/K ) (u − ρ).
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With this function f , the maximum sustainable density is still equal to K . However, contrarily towhat we observed with the form (3), the maximum per capita growth rate is independent of Kand equal to r . The average per capita growth rate in the interval u ∈ (ρ, K ) is also independentof K , and equal to 2 r/3. Thus, the new functional form (4) allows us to study the effect of thecarrying capacity per se, i.e., when K has a limited effect on the growth of populations underoptimal density conditions. A graphical comparison of the standard form of f (3) and the newform (4) is provided in Supplementary Information S1.
1.4. Positive density-dependent dispersal.

We assume a simple logistic growth function f (u) = r u(1 − u/K) (no Allee effect). Positivedensity-dependent dispersal is modeled by considering an increasing function ϕ(u). The moststandard form is ϕ(u) = D ua, with D, a > 0, the corresponding reaction-diffusion equation beingthe “porous media equation" (Vázquez, 2007). We focus here on the case a = 1, which was inpart analyzed by Murray, 2002, and for which an explicit formula for the speed is available inthe particular case K = 1 (Newman, 1980), and can easily be adapted to any K > 0.Other forms of ϕ(u) could be considered as well. For example ϕ(u) = ua/(τ a + ua) with
τ , a > 0 may be an appropriate function to describe a saturation effect (ϕ(u) → 1 for largevalues of u) but there is no general formula for the propagation speed in this case.
1.5. Individual-based stochastic simulation models (IBMs).

We consider a discrete time and discrete space stepping-stone model on a one-dimensionalinfinite grid indexed by i ∈ N: the focus is on the propagation to the right, as in the theoreticalmodels of Section 1.1. The number of individuals on the patch i of the grid, at time t is denoted by
Ni(t). We assume non-overlapping generations (of duration δt = 1). The population distributionat time t + 1 is obtained from three consecutive steps: reproduction, dispersal and competition,described below.Reproduction step. The number of offspring at each position i ≥ 0 is a random variable followinga Poisson distribution with mean R g(Ni(t)):
(5) Oi(t) ∼ Poisson(R g(Ni(t))),
for a function g which depends on the assumptions (Allee effect or not) and with R the meannumber of offspring per individual, per generation, in optimal conditions. ThoseDispersal step. We assume random walk movements of individuals. Since generations are non-overlapping, only movements of the offspring are considered. Thus, at each generation, eachindividual stays at the same position with probability p0, or migrates to an adjacent patch withprobability p1 = 1 − p0 (same probability p1/2 to move to the left or to the right), which may de-pend on the local population size Oi or not, depending on the assumptions (presence of density-dependent dispersal or not). At each position i , the numbers of offspring moving to the left Ol

i ,staying at the same position On
i , and moving to the right Or

i follow a multinomial distribution
(Ol

i , On
i , Or

i ) ∼ Multinomial(Oi , p1/2, p0, p1/2), and the number of individuals Di at position i af-ter the dispersion is equal to Di = Or
i−1 +On

i +Ol
i+1. Note that, for small time steps δt and spacesteps δx (here, δt = δx = 1), this type of dispersal can be approached by a diffusion operator, ofthe same form as in Section 1.1, with e.g, D = p1 δ2

x/(2 δt) when p1 is constant (see L Roques,2013, Chapter 2 and references therein).Competition step. As our objective is to understand the effect of the carrying capacity per se, weassume that K has no impact on the reproduction step. Thus, the competition step is the onlystep which is influenced by the carrying capacity K . To avoid an effect of K on the maximum percapita growth rate, we consider an extreme case where the effect of competition is negligiblewhen the population size is below the threshold K and then increases continuously.By definition of the carrying capacity, the expected number of deaths due to competitionshould be equal to the number of individuals exceeding K , at each position. The number ofdeaths due to competition µi is 0 if Di < K , and follows a binomial distribution otherwise: µi ∼Binomial(Di , 1 − K/Di). This implies that the expected number of deaths is E [µi |Di ] = Di − K
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when Di ≥ K . Then, the population distribution at generation t +1 can be computed: Ni(t +1) =
max(Di − µi , 0).We now describe the reproduction and dispersal steps under the three considered scenarios.
1.6. Null model: density-independent dispersal, no Allee effect.

In the reproduction step, we simply assume that g(Ni) = Ni . With this assumption, the ex-pected per capita offspring number E (Oi/Ni) is constant equal to R (Fig. 1). In the dispersal step,we assume that p0 (and therefore p1) are independent of the local population size.
1.7. Strong Allee effect.

In the reproduction step, we assume
(6) g(Ni) =

{
Ni

Ni
ρ R if Ni ≤ ρ R,

Ni if Ni > ρ R,
for an integer ρ ≥ 2. The corresponding shapes of the expected per capita offspring E(Oi/Ni)are depicted in Fig. 1. The expected offspring number is larger than the parent population ifand only if Ni is larger than the threshold ρ. Note that, with these assumptions, the maximumexpected per capita offspring number in the IBM is equal to R , and is therefore independent of
K . This is consistent with the reaction-diffusion framework (4).A value ρ = 1 would correspond to a weak Allee effect: due to the discrete nature of Ni , theper capita growth rate is always larger than 1, but themaximum is reached for someNi = ρ R > 1.
1.8. Positive density-dependent dispersal.

In this scenario, we assume that there is no Allee effect (g(Ni) = Ni ) and that p1 is an increas-ing function of the number of individuals Oi , following a sigmoid-like dependence:
(7) p1 = Oi

τ + Oi
,

for some constant τ that will be specified later. Thus, p1 ∼ Oi
τ for small values of Oi and p1 = 1/2when Oi = τ and the probability p0 = 1 − p1 is well-defined: p0 ∈ [0, 1].

In all cases, we assumed a boundary condition N0(t) = K and initial condition Ni(0) = 0 for
i ≥ 1. The speed was computed as the number of colonized patches (i.e., with population largerthan K/10) over the number of generations (300 generations). Because the dispersal is local(with δx = 1), the speed cannot exceed 1: at most one new patch is colonized per generation.In each scenario, for each parameter value (to be specified later, in the Results Section), and forany K ∈ {1, ... , 500}, we carried out 200 replicate simulations, and measured the mean speed
v among these replicates together with 99% confidence intervals for the mean. In all cases, wefixed R = e1, corresponding to the analogue of r = 1 in the continuous time approaches ofSection 1.1. Examples of simulated range expansions are given in Fig. 2.
1.9. Experimental study: propagation of a parasitoid wasp in a microcosm.

To test in experimental conditions whether positive density-dependent dispersal leads to apositive correlation between K and v , we carried out a microcosm experiment on the minutewasp Trichogrammachilonis, forwhich positive density-dependent dispersal has been documentedtogether with the absence of Allee effect (Morel-Journel, Girod, et al., 2016).
1.10. Biological model.

We used a wasp from the Trichogrammatidae family. This hymenoptera of size less than1mm is an egg parasitoid of several lepidopteran species. Trichogramma are used as biologicalcontrol agents against different pests Smith, 1996. They are well-suited for microcosm experi-ments because generation time is short and breeding is easy. In addition, parasitized eggs canbe identified by their color which turns from white to dark gray because of chitinisation of the
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Figure 1 – Schematic plot of the expected per capita offspring E(Oi/Ni) in terms of
Ni . Horizontal blue line: no Allee effect. Red line: Allee effect with threshold ρ. R is theaverage per capita growth rate.

Figure 2 – Range expansions simulated with the IBMs. Black curve: null model, with
K = 120 and probability of migration p1 = 0.5 ; red curve: strong Allee effect, ρ = 20 and
K = 100, p1 = 0.5; blue curve: density-dependent dispersal, τ = 500, K = 80, p1 = 0.14.In all cases, t = 150.

parasitoid pupa (Reay-Jones et al., 2006). As females lay at most one offspring per host eggsthe number of parasitized eggs can be directly counted to estimate population size at the nextgeneration.
1.11. Experimental protocol.

The protocol is similar to the one established in Morel-Journel, Girod, et al., 2016 with thesame biological model. The experiment was conducted in climatic rooms with controlled tem-perature, lighting and humidity. Day cycles lasted 16 hours at 25◦C, night cycles lasted 8 hoursat 20◦C, with a constant humidity around 70%. Populations of Trichogramma were introducedin experimental landscapes composed of 11 patches (see-through plastic tubes: high: 100mm,diameter: 50mm). Patches are connected by see-through plastic pipes (length: 400mm, diameter:5mm) in order to create a one-dimensional stepping stone landscape. Initial populations werecomposed of 50 parasitized host eggs placed in the central patch of the landscape. Colonizationoccurred on both sides of this patch, see Fig. 3.Hosts were eggs of the Mediterranean flour moth, Ephestia kuehniella. The eggs were irra-diated to prevent larval development of the moth while allowing the development of the tri-chogramma. Each generation cycle was completed in 9 days. The first step of the cycle wasthe emergence of adults. At this stage fresh host eggs were introduced, and each patch wasconnected to its direct neighbors to allow parasitoid migration. For the next two days, individu-als could mate, lay eggs and possibly migrate to neighboring patches. At the end of those twodays adults were removed in order to obtain non-overlapping generations. Host eggs exposedto parasitism were set aside until the emergence of the next generation of parasitoids. After four
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Figure 3 – Experimental system: 11 plastic tubes connected with pipes to form a onedimensional stepping-stone landscape. Population can spread on both sides of the intro-duction patch. The propagation speed is computed as the number of colonized patcheson one side divided by the number of generation.
days, photographs of host eggs were taken, and parasitized eggs which had turned black at thisstage, were counted with the help of the software ImageJ. The available number of host eggs ineach patch determines themaximum parasitoid density in the next generation. Thus, it is directlycorrelated to the carrying capacity in this patch. In order to analyze the impact of the carrying ca-pacity on propagation speed, we compared two modalities in the number of host eggs available.At each new generation fresh host eggs were provided to these twomodalities : 150 to 200 eggsfor small carrying capacity (modality S) and 400 to 450 eggs for large carrying capacity (modalityL). A third modality with lower resources was also tested under a slightly different protocol, seeSupplementary Information S4.Each modality of carrying capacity was replicated 20 times over 4 balanced time blocks, andpopulations were monitored during 10 generations.
1.12. Presence of positive density-dependent dispersal analysis.

Using Approximate Bayesian Computation (ABC), we checked for the presence of positivedensity-dependent dispersal for Trichogramma chilonis in our experimental design by compar-ing two different scenarios, one with fixed dispersal and one with positive density-dependentdispersal (with a dependence of the form (7)). This analysis confirmed that the positive density-dependent dispersal scenario is themost likely, as suggested by a previous study with a compara-ble protocol (Morel-Journel, Girod, et al., 2016). More details on the ABC analysis are presentedas Supplementary Information S2.
1.13. Statistical analysis.

Over the 40 experimental populations, 6 went extinct between generations 2 to 4 becauseof technical issues linked to climatic rooms where populations were reared. More extinctionsoccurred in the modality S (5, versus 1 in the modality L), which is consistent with theoreticalpredictions that small populations are more vulnerable to environmental stochasticity (Lande,1993). Data corresponding to those populations were removed from the analyses. Each remain-ing population led to two propagation fronts (left and right), for which we calculated the numberof colonized patches per population and generation. In total, 30 different fronts for modality Sand 38 for modality L were analyzed.To determine whether the carrying capacity influences propagation speed, we analyzed thenumber of colonized patches evolution for each front with a general linear model with mixedeffects (GLMM, Bolker et al., 2009). The number of colonized patches was modeled with a Pois-son law (log link). To account for the non-independence of data within each replicate acrosstime and for environmental variance between blocks, we included replicate ID, front (left/right,
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(b) Allee effects ρ = 20
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(c) Allee effects ρ = 50
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(d) Density-dependent dispersal
Figure 4 –Propagation speed vs carrying capacity: IBM simulations and predictions of thereaction-diffusion theory. The shaded regions correspond to 99% confidence intervals forthe mean speed obtained with individual-based simulations after 300 generations, with200 replicate simulations for each scenario. The plain lines correspond to the propagationspeed given by the analytical theory: formulas (2) for panel (a), formula (8) for panels (b)and (c) and formula (9) for panel (d). In panels (b),(c), the dashed lines correspond to thetheoretical propagation speed obtained with classical growth function (3). In all cases,we set R = e1 in the IBM simulations and r = 1 in the reaction-diffusion framework.The diffusion coefficients D in the reaction-diffusion framework were fixed such that, ineach scenario, the theoretical speed equals the average IBM speed for K = 500. Theparameter values p1 in panel (d) (positive density-dependent dispersal) correspond to apopulation Oi = 500 individuals in formula (7).

nested with replicate) and block number as random effects on the slope. We tested two mod-els corresponding to two hypotheses. The null model included only the generation as a fixedeffect, thus considering that colonization speed was independent of carrying capacity. The alter-native model included both generation and its interaction with experimental modality as fixedeffects, accounting for a dependency between colonization speed and carrying capacity. Weselected the best model based on Akaike Information Criterion (AIC): the best model has thelowest AIC. Then we computed the AIC weight AICw associated with the best model as follows,
∆(AIC) = AICmax − AICmin and AICw = 1

1+exp(− 1
2∆(AIC)) .

Marjorie Haond et al. 9

Peer Community Journal, Vol. 1 (2021), article e57 https://doi.org/10.24072/pcjournal.66

https://doi.org/10.24072/pcjournal.66


2. Results
2.1. Null model.

As expected, whatever the probability of migration p1 (p1 = 0.25 or 0.5) the null IBM leadsto results which are consistent with the Fisher-KPP reaction-diffusion model when K is nottoo small (here, K ≳ 20). Namely, the mean speed v obtained with IBM simulations is almostindependent of K . For smaller values of K , the behaviors of the two modeling frameworks tendto diverge due to the demographic stochasticity in the IBM. Whereas the propagation speed isalways completely independent of K in the Fisher-KPP model, the simulations of the IBM leadto a positive and strongly increasing dependence between K and v for small values of K . Theseresults are depicted in Fig. 4a.
2.2. Strong Allee effect.

As explained in Section 1.1, the standard form of growth function (3) usually used in reaction-diffusion models is not adapted to our study. However, it leads to a simple explicit formula forthe propagation speed, which can be adapted to derive a formula for the propagation speedwith the new form of growth function (4) that we proposed in Section 1.1. Namely, with thefunctional form (3), the propagation speed is v =
√

2 rD(
√

K/2−ρ/
√

K ), see Hadeler and Rothe,1975 for K = 1 and e.g., Keitt et al., 2001 and L Roques, 2013 for other values of K . Replacing
r by 4 r K/(K − ρ)2 in this formula, we obtain a new formula for v for growth functions of theform (4):
(8) v =

√
2 r D K − 2 ρ

K − ρ
.

Thus, v is an increasing function of K , and converges to a finite value √
2 r D as K → ∞. Propa-gation occurs (v > 0) only when K > 2 ρ.IBM simulations have been carried out with two values for the Allee threshold ρ (ρ = 20and ρ = 50), and with two values for probability of migration (p1 = 0.25 or 0.5). The results arepresented in Fig. 4b and 4c, together with the predictions of the reaction-diffusion approach. Inagreement with the reaction-diffusion approach, propagation occurs only for values of K ≳ 2 ρ,and after this threshold, themean speed v increaseswithK .We note that, in the IBM framework,propagation tends to occur for values ofK slightly lower than predicted by the reaction-diffusionapproach. The difference is more visible for large migration probability and Allee threshold (p1 =

0.5 and ρ = 50, see Fig. 4c). The stronger dependence between K and v is located aroundthe threshold K ≈ 2 ρ. Then, the curves converge towards horizontal asymptotes. The globalshape of v is close to that predicted by formula (8), but very different from that obtained withthe standard formula corresponding to growth functions (3) (which predict that v increases like√
K ), probably due to the dependence of the maximum per capita growth rate with respect to

K , which does not occur in our IBM (see also Supplementary Information S1).
2.3. Positive density-dependent dispersal.

The reaction-diffusion framework proposed in Section 1.1, with a density-dependent diffu-sion coefficient ϕ(u) = D u, leads to a simple analytic formula for the propagation speed, whichis obtained by adapting the formula in Newman, 1980 (K = 1) to general values of K :
(9) v =

√
rDK .

Thus, this model predicts that v increases like K 0.5 when the diffusion coefficient is proportionalto the population size. This is different fromwhat was obtained with a strong Allee effect, where
v ∼

√
2 r D for large K .In our IBM simulations, we fixed the constant τ to 1500 or 500 in (7) so that the probability ofmigration satisfies p1 = 0.25 or p1 = 0.5 when the population size equals Oi = 500, the maximumtested value for the carrying capacity. The results are presented in Fig. 4d. In all cases, we observean increasing relationship between K and the mean speed v . The dependence with respect to Kis quite different from what was observed with a strong Allee effect. First, propagation always
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occurs, even for small values ofK . Second, themean speed v does not seem to converge towardsan horizontal asymptote until it reaches its maximum possible value (1 in this framework where
δx = δt = 1). A polynomial fit shows that v is approximately proportional to K 0.3, which isqualitatively close to the prediction of the reaction-diffusion framework (sublinear increase), butquantitatively different, probably due to the differences in the assumptions on the form of thedensity-dependence.
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Figure 5 – Mean number of colonized patches for the 68 replicate fronts over 10 gen-erations (a); and corresponding mean speed (b). The red line corresponds to the smallcarrying capacity 150-200 host eggs, and the blue line corresponds to the large carry-ing capacity 400-450 host eggs. The red envelope is the 95% confident interval for thesmall modality and the blue envelope is 95% confidence interval for the large carryingcapacity.

Experimental results confirmed the positive relationship between carrying capacity and inva-sion speed, for a population displaying positive density-dependent dispersal but no Allee effect(Morel-Journel, Girod, et al., 2016, see also Supplementary Information S2 for the ABC analysisof dispersal in T. chilonis). Fig. 5 (a) depicts themean number of colonized patches over the 10 gen-erations, for the twomodalities of carrying capacity. Based on AIC selection, the best model esti-mates different slopes for the twomodalities of carrying capacity (∆(AIC) = 2.363, AICw = 0.765; interaction between generation and experimental modality: z value=-2.206, p-value=0.0274).In our experimental data, over the 10 generations, propagation fronts progressedwith a speed of0.17 patch per generation in the L modality against 0.13 patch per generation in the S modality;see Fig. 5 (b). From a quantitative viewpoint, when the R parameter in the simulation model isfixed so that the average propagation speed is 0.17 for the large modality (K = 400 in the IBM),we get a speed of 0.14 patch per generation for the small modality (K = 200 in the IBM). This isdetailed in Supplementary Information S3.

3. Discussion
3.1. Different approaches, same conclusions.

We used theoretical, simulation, and experimental approaches to investigate the influence ofthe carrying capacity K on the propagation speed of a population. These approaches revealedthat the three biological mechanisms examined here could, under different conditions, lead to apositive relationship between K and v .Positive density-dependent dispersal led to this increasing relationship under the three con-sidered frameworks, independently of parameter values. However, the difference between the
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number of colonized patches for the S and L modalities in the experiment remained small. Theo-retical and simulation results indicate that in the presence of positive density-dependent disper-sal, the mean propagation speed is a concave (sublinear) function of K (Fig. 4d), with therefore alower effect of K as K becomes large. We expect that lower values of K for the small modalitywould have led to significantly lower speeds. A posterior experiment that we conducted for an-other purpose and with a different protocol provides additional support to this conclusion (seeSupplementary Information S4). Additional comparisons with simulation results (see Supplemen-tary Information S3) also suggest that the difference between the S and L modalities should bemore visible after more generations.A Strong Allee effect led to similar conclusions to positive density-dependent dispersal underour theoretical and simulation frameworks but was not investigated experimentally. To disentan-gle the effect of K from the effect of the growth rate on the propagation speed, we proposed anew reaction-diffusionmodel for the strong Allee effects.With this model, contrarily to commonapproaches (Barton and Turelli, 2011; Hadeler and Rothe, 1975; Keitt et al., 2001; M A Lewisand Kareiva, 1993; Turchin, 1998), the maximal per capita growth rate is independent of K . Withthis new function, the shape of the propagation speed as a function of K , v(K ), is closer to whatwe obtained with the simulation approach (Fig. 4b, and 4c); indeed by construction K does notimpact the reproduction step in the IBM. In the presence of a strong Allee effect, our resultsindicate that the stronger dependence between v and K occurs when K is approximately twotimes larger than the Allee threshold ρ. This corresponds to the beginning of the propagation forthe population.In the absence of Allee effect and of density-dependent dispersal, theoretical and simula-tion approaches lead to consistent conclusions. When the carrying capacity is not too small thespeed v is constant and independent of K . But, in the simulation approach, there is a strongrelationship between the carrying capacity and the propagation speed for small populations.This dependency is induced by the stochasticity of the reproduction and dispersal step in thesimulation approach. Such processes are expected to occur in all populations, but their impact isstronger in small populations (Gabriel and Bürger, 1992). This result highlights that even withoutany specific demographic mechanism, propagation speed may depend on the carrying capacityin small populations.
3.2. Experimental studies with macro-organisms.

Several recent studies compared the propagation properties of theoretical reaction-diffusionmodels vs. laboratory experiments. Yet they all used micro-organisms as biological models withlarge number of individuals (Gandhi et al., 2016; Giometto et al., 2014). These works have shownthat the Fisher-KPP model is consistent with experimental speed when populations are not sub-ject to any particular demographic process such as the Allee effect. Still like us they highlight theneed for taking stochasticity into account in order to accurately predict speed, especially in smallpopulations. For our experiment we chose to focus on amacro-organismwith smaller populationsizes (hundreds) experiencing important levels of demographic stochasticity. This allowed us toobserve discrete numbers of individuals rather than densities of individuals.These three distinct ecological mechanisms induced the same qualitative relationship – con-cave function – between carrying capacity and propagation speed. Interestingly, these mech-anisms also share another common property: they make colonization more difficult when thesource population is at low density, which impacts their propagation pattern. Therefore, thedetection of a positive relationship between carrying capacity is not sufficient to discriminatebetween ecological mechanisms related to low-density dynamics, but is rather a qualitative in-dicator of a specific class of propagation dynamics.
3.3. Carrying capacity impacting propagation speed, a proxy for pulled/pushed propagation?.

Most of the time, studies on propagation dynamics focus on organismswith fast reproductionand dispersal. Range expansion in these types of populations is typically driven by individualsin small density at the edge of the range, which is described as pulled dynamics. In contrast,propagation dynamics are called pushedwhen they are influenced by the dynamics of individuals
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at intermediate or high density (L Roques, Garnier, et al., 2012). Therefore, the dependency ofthe propagation speed on the carrying capacity should be an indicator of the pushed nature ofa wave. Populations subject to strong Allee effects are known to experience pushed dynamics(Gandhi et al., 2016; L Roques, Garnier, et al., 2012). Stochasticity was also described by Panja,2004 as leading to “weakly pushed" dynamics (i.e., pushed dynamics that would converge topulled dynamics in the limit of infinite population sizes). Based on the results of our study, weargue that positive density-dependent dispersal also leads to pushed propagation patterns. Thepushed nature of the dynamics implies that the individuals at the edge of the populations arenot able to fully drive the propagation. This may be because their colonization potential at lowdensity is not efficient, e.g. Allee effects impacting reproduction or the stochasticity impactingreproduction, mortality and dispersal. For positive density-dependent dispersal individuals at theedge of the front do not produce enough dispersers to allow further propagation, thus causing apushed expansion pattern. Conversely, independence of v with respect toK does not necessarilyimply that the waves are pulled, but strongly suggests it.
Understanding the pulled or pushed nature of propagation is an important issue for forecast-ing spread and elaborating conservation or eradication strategies. Control or eradication strate-gies for populations subjected to an Allee effect have been well theorized. They are based eitheron the increase of the Allee threshold, or on reducing population size under the existing thresh-old through culling or biological control (Taylor and Hastings, 2005; Tobin et al., 2011). Unlikepulled expansions, pushed populations might also bemanaged indirectly, by altering the carryingcapacity of the landscape. For instance, the “range pinning” in which expansion stops even in thepresence of suitable habitat has been theoretically described for populations subject to a strongAllee effect (Keitt et al., 2001), and might be a general property of pushed expansion fronts. Re-cent theoretical work has also shown that pushed expansions can be halted by creating a barrierof unfavorable habitat even if this barrier has holes (L Roques, A Roques, et al., 2008; Tanakaet al., 2017). In addition to these theoretical predictions, recent experimental results obtained inperiodic environments show that expansion can be stopped by a succession of low-K habitatsin the presence of density-dependent dispersal (Morel-Journel, Hautier, et al., 2018).
Feedbacks from re-introduction programs for conservation purposes also provide some valu-able insight about expansion dynamics at low density. In many cases, populations that have beenre-introduced failed to expand (or expanded very slowly), despite a positive demography, e.g.,raptors in Great Britain (Carter et al., 2003;Mackrill et al., 2013) or large predators inNorth Amer-ica (Hayward and Somers, 2009; Hornocker and Negri, 2009). This phenomenon was linked tothe presence of an Allee effect (Hurford et al., 2006), to high philopatry (Mackrill, 2017), whichoften relates to density-dependent dispersal, or to poor dispersal abilities (Hornocker and Ne-gri, 2009), which increases dispersal stochasticity. All these characteristics were likely to inducepushed propagation patterns. In such cases, the counter-intuitive measure of improving the lo-cal habitat to further increase the size of the source population might be an efficient way topromote spatial expansion. However, highly endangered populations subject to expensive re-introduction programs have often also suffered from massive habitat loss (Kramer-Schadt et al.,2005), so the remaining available habitat may not be sufficient to allow for pushed expansionsto occur even if viable populations can be locally sustained. In this case, further re-introductionswould be needed to establish enough population cores to ensure long-term persistence. In a sec-ond step, dispersal fluxes should be monitored to verify whether the population cores manageto achieve metapopulation dynamics, or whether the regular translocation of individuals shouldbe maintained in the long term (Armstrong and Seddon, 2008).
This work is the first theoretical and empirical demonstration of the influence of carryingcapacity on propagation speed.Our results suggest that this relationship is a commonproperty ofpushed waves, which are characterized by density-dependent colonization success. This findingraises innovative perspectives for the use of landscape properties for themanagement of pushedpopulations and for the optimization of re-introduction programs.
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