7,010 research outputs found

    Interphase layer optimization for metal matrix composites with fabrication considerations

    Get PDF
    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes

    Tailored metal matrix composites for high-temperature performance

    Get PDF
    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate

    Baryon Electromagnetic Properties in Partially Quenched Heavy Hadron Chiral Perturbation Theory

    Full text link
    The electromagnetic properties of baryons containing a heavy quark are calculated at next-to-leading order in partially quenched heavy hadron chiral perturbation theory. Calculations are performed for three light flavors in the isospin limit and additionally for two light non-degenerate flavors. We use partially-quenched charge matrices that are easy to implement on the lattice. The results presented are necessary for the light quark mass extrapolation and zero-momentum extrapolation of lattice QCD and partially quenched lattice QCD calculations of heavy hadron electromagnetic properties. Additionally relations between the sextet electromagnetic form factors and transition form factors are derived.Comment: 29 pages, 3 figures, RevTex

    Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels

    Get PDF
    The structure of model gluten protein gels prepared in ethanol/water is investigated by small angle X-ray (SAXS) and neutrons (SANS) scattering. We show that gluten gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds.Comment: Soft Matter, Royal Society of Chemistry, 201

    Doubly Heavy Baryons and Quark-Diquark Symmetry in Quenched and Partially Quenched Chiral Perturbation Theory

    Get PDF
    We extend the chiral Lagrangian with heavy quark-diquark symmetry to quenched and partially quenched theories. These theories are used to derive formulae for the chiral extrapolation of masses and hyperfine splittings of doubly heavy baryons in lattice QCD simulations. A quark-diquark symmetry prediction for the hyperfine splittings of heavy mesons and doubly heavy baryons is rather insensitive to chiral corrections in both quenched and partially quenched QCD. Extrapolation formulae for the doubly heavy baryon electromagnetic transition moments are also determined for the partially quenched theory.Comment: 19pp, Ref. adde

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio

    Light elements in massive single and binary stars

    Full text link
    We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance in massive early type stars contains key information about their foregoing evolution which is not obtainable otherwise. In particular, it allows to constrain internal mixing processes and potential previous mass transfer event for binary stars (even if the companion has disappeared). It may also help solving the mystery of the slowly rotating nitrogen-rich massive main sequence stars.Comment: 10 pages, 8 figures, to appear in proc. IAU-Symp. 268. C. Charbonnel et al., eds

    Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean.

    Get PDF
    An extensive data set of measurements within the Chukchi and Beaufort Seas is used to characterize the optical properties of seawater associated with different phytoplankton communities. Hierarchical cluster analysis of diagnostic pigment concentrations partitioned stations into four distinct surface phytoplankton communities based on taxonomic composition and average cell size. Concurrent optical measurements of spectral absorption and backscattering coefficients and remote-sensing reflectance were used to characterize the magnitudes and spectral shapes of seawater optical properties associated with each phytoplankton assemblage. The results demonstrate measurable differences among communities in the average spectral shapes of the phytoplankton absorption coefficient. Similar or smaller differences were also observed in the spectral shapes of nonphytoplankton absorption coefficients and the particulate backscattering coefficient. Phytoplankton on average, however, contributed only 25% or less to the total absorption coefficient of seawater. Our analyses indicate that the interplay between the magnitudes and relative contributions of all optically significant constituents generally dampens any influence of varying phytoplankton absorption spectral shapes on the total absorption coefficient, yet there is still a marked discrimination observed in the spectral shape of the ratio of the total backscattering to total absorption coefficient and remote-sensing reflectance among the phytoplankton assemblages. These spectral variations arise mainly from differences in the bio-optical environment in which specific communities were found, as opposed to differences in the spectral shapes of phytoplankton optical properties per se. These results suggest potential approaches for the development of algorithms to assess phytoplankton community composition from measurements of seawater optical properties in western Arctic waters

    Spectroscopic determination of the fundamental parameters of 66 B-type stars in the field-of-view of the CoRoT satellite

    Get PDF
    We aim to determine the fundamental parameters of a sample of B stars with apparent visual magnitudes below 8 in the field-of-view of the CoRoT space mission, from high-resolution spectroscopy. We developed an automatic procedure for the spectroscopic analysis of B-type stars with winds, based on an extensive grid of FASTWIND model atmospheres. We use the equivalent widths and/or the line profile shapes of continuum normalized hydrogen, helium and silicon line profiles to determine the fundamental properties of these stars in an automated way. After thorough tests, both on synthetic datasets and on very high-quality, high-resolution spectra of B stars for which we already had accurate values of their physical properties from alternative analyses, we applied our method to 66 B-type stars contained in the ground-based archive of the CoRoT space mission. We discuss the statistical properties of the sample and compare them with those predicted by evolutionary models of B stars. Our spectroscopic results provide a valuable starting point for any future seismic modelling of the stars, should they be observed by CoRoT.Comment: 31 pages (including 14 pages online material), 32 figure

    First orbital solution for the non-thermal emitter Cyg OB2 #9

    Full text link
    After the first detection of its binary nature, the spectroscopic monitoring of the non-thermal radio emitter Cyg OB2 #9 (P=2.4yrs) has continued, doubling the number of available spectra of the star. Since the discovery paper of 2008, a second periastron passage has occurred in February 2009. Using a variety of techniques, the radial velocities could be estimated and a first, preliminary orbital solution was derived from the HeI5876 line. The mass ratio appears close to unity and the eccentricity is large, 0.7--0.75. X-ray data from 2004 and 2007 are also analyzed in quest of peculiarities linked to binarity. The observations reveal no large overluminosity nor strong hardness, but it must be noted that the high-energy data were taken after the periastron passage, at a time where colliding wind emission may be low. Some unusual X-ray variability is however detected, with a 10% flux decrease between 2004 and 2007. To clarify their origin and find a more obvious signature of the wind-wind collision, additional data, taken at periastron and close to it, are needed.Comment: 15 pages, 4 figures, accepted by Ap
    • …
    corecore