13 research outputs found

    Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    Get PDF
    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu I -catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormones B-chain C-terminus for its IR-B specificity

    Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead.

    No full text
    The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments

    Metformin inhibits androgen-induced IGF-IR up-regulation in prostate cancer cells by disrupting membrane-initiated androgen signaling.

    No full text
    We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR(+) LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy
    corecore