147 research outputs found

    Vasodilatadores en la hipertensión pulmonar: selectividad por el territorio vascular, por oxígeno y efectos antiproliferativos

    Get PDF
    La Hipertensión Pulmonar (HP) es una enfermedad crónica y progresiva. La HP presenta una compleja fisiopatología caracterizada por vasoconstricción, remodelado vascular y trombosis. Las terapias actuales muestran efectos beneficiosos, sin embargo presentan también importantes limitaciones: 1) pobre selectividad pulmonar, 2) modesta eficacia vasodilatadora, 3) desacoplamiento de la ventilación/perfusión (V/Q) e 4) incapacidad para prevenir la progresión de la enfermedad. La quercetina es un flavonoide natural que se consume en la dieta. Ejerce efectos in vitro como vasodilatador, antiagregante y antiproliferativo. Además, reduce la presión arterial, la hipertrofia cardíaca y el remodelado vascular en modelos animales de hipertensión arterial. Hipótesis y objetivos La hipótesis general de esta tesis es que los fármacos vasodilatadores sensibles al oxígeno con selectividad pulmonar son eficaces para reducir la presión arterial pulmonar (PAP) y para preservar o mejorar la oxigenación arterial. El objetivo general de esta tesis es analizar los efectos vasodilatadores y antiproliferativos de una amplia gama de fármacos con el fin de identificar aquellos que potencialmente presenten una mejor eficacia y menos efectos secundarios, basado en su capacidad para: 1) combinar los efectos como vasodilatador y antiproliferativo, 2) ejercer efectos vasodilatadores selectivos en la circulación pulmonar, evitando la hipotensión sistémica, 3) inducir vasodilatación selectiva en zonas bien oxigenadas (preservando la vasoconstricción pulmonar hipóxica‐VPH) y 4) ejercer vasodilatación eficaz en condiciones de sensibilización al calcio. Material y métodos La selectividad pulmonar y por oxígeno se evaluaron utilizando arterias mesentérica y pulmonares (AP) de ratas y AP humanas bajo diferentes condiciones de oxigenación en un miógrafo isométrico. Las preparaciones se estimularon con una mezcla de serotonina, U46619 y endotelina‐1 antes de realizar curvas concentración‐respuesta a diferentes fármacos..

    Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development.

    Get PDF
    Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers. Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ (recombination signal-binding protein for immunoglobulin kappa J region). The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development. Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.This study was supported by a grant from the Ministerio de Ciencia e Innovación with cofunding from the European Regional Development Fund (SAF2016- 75580-R and PID2019-108568RB-I00 to J.F. Bentzon and SAF2016-78370-R to J.L. de la Pompa) and from the Novo Nordisk Foundation (NNF17OC0030688 to. J.F. Bentzon). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit.Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods.Results:In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA.Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH

    The Flavonoid Quercetin Reverses Pulmonary Hypertension in Rats

    Get PDF
    Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.This work was supported by grants and fellowships by the Spanish Ministerio de Economia y Competitividad (SAF2011-28150 to F.P-V, SAF2010-22066-C02-01 to JD, and −02 to AC); Instituto de Salud Carlos III Red HERACLES RD06/0009 to JD; Miguel Servet Program CP12/03304 to LM; predoctoral grants BES-2012-051904 to DMS, CM, JMS, and PG; and Junta de Andalucia (Proyecto de excelencia, P12-CTS-2722)

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model.

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.This work was supported by the Instituto de Salud Carlos III-ISCIII (Grant numbers: PI15/01100 and PI19/01616 to LM), the Spanish Ministry of Science and Innovation MCIN (Grant numbers: PID 2019-107363RB-I00 to FP-V, PID 2020-117939RBI00 to AC and PID 2021-123238OB-I00, PDC 2021-121696-I00 to JRC and PID2019-106564RJ-I00 to JI-G), the Comunidad de Madrid-CAM (CM S2017/BMD-3727 to AC and LM and B2017/ BMD3875 to JI-G) and, as appropriate, by “ERDF A way of making Europe”, co-funded by the “European Union”. FP-V received funding from Fundación Contra la Hipertensión Pulmonar (Empathy grant) and JR-C from La Caixa Foundation (Health Research Call 2020: HR20-00075). This work was performed under the Maria de Maeztu Units of Excellence Programme–Grant MDM-2017-0720 funded by MCIN/AEI/10.13039/501100011033.S

    Oxygen-sensitivity and Pulmonary Selectivity of Vasodilators as Potential Drugs for Pulmonary Hypertension

    Get PDF
    Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs. the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH

    Effects of Quercetin in a Rat Model of Hemorrhagic Traumatic Shock and Reperfusion

    Get PDF
    Background: We hypothesized that treatment with quercetin could result in improved hemodynamics, lung inflammatory parameters and mortality in a rat model of hemorrhagic shock. Methods: Rats were anesthetized (80 mg/kg ketamine plus 8 mg/kg xylazine i.p.). The protocol included laparotomy for 15 min (trauma), hemorrhagic shock (blood withdrawal to reduce the mean arterial pressure to 35 mmHg) for 75 min and resuscitation by re-infusion of all the shed blood plus lactate Ringer for 90 min. Intravenous quercetin (50 mg/kg) or vehicle were administered during resuscitation. Results: There was a trend for increased survival 84.6% (11/13) in the treated group vs. the shock group 68.4% (13/19, p > 0.05 Kaplan–Meier). Quercetin fully prevented the development of lung edema. The activity of aSMase was increased in the shock group compared to the sham group and the quercetin prevented this effect. However, other inflammatory markers such as myeloperoxidase activity, interleukin-6 in plasma or bronchoalveolar fluid were similar in the sham and shock groups. We found no bacterial DNA in plasma in these animals. Conclusions: Quercetin partially prevented the changes in blood pressure and lung injury in shock associated to hemorrhage and reperfusion.Supported by FundaciónMutuaMadrileña (AP102962012), SpanishMINECO(SAF 2011-28150; SAF2014-55399R; SAF2014-58920) and ISCIII (CP12/03304, FIS 15/1492)

    HIV transgene expression impairs K+ channel function in the pulmonary vasculature

    Get PDF
    Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH), however the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyse if the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild type (Wt) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries (PA). K+ currents were recorded in freshly isolated PA smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized that those from Wt. While Kv1.5 currents were preserved, pH-sensitive non-inactivating background currents (IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L634,373 assessed by vascular reactivity and patch-clamp experimental approaches. While we found pulmonary vascular remodelling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels, was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH

    Variation in Susceptibility to Downy Mildew Infection in Spanish Minority Vine Varieties

    Get PDF
    Downy mildew is one of the most destructive diseases affecting grapevines (Vitis vinifera L.). Caused by the oomycete Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, it can appear anywhere where vines are cultivated. It is habitually controlled by the application of phytosanitary agents (copper-based or systemic) at different stages of the vine growth cycle. This, however, is costly, can lead to reduced yields, has a considerable environmental impact, and its overuse close to harvest can cause fermentation problems. All grapevines are susceptible to this disease, although the degree of susceptibility differs between varieties. Market demands and European legislation on viticulture and the use of phytosanitary agents (art. 14 of Directive 128/2009/EC) now make it important to know the sensitivity of all available varieties, including minority varieties. Such knowledge allows for a more appropriate use of phytosanitary agents, fosters the commercial use of these varieties and thus increases the offer of wines associated with different terroirs, and helps identify material for use in crop improvement programmes via crossing or genetic transformation, etc. Over 2020–2021, the susceptibility to P. viticola of 63 minority vine varieties from different regions of Spain was examined in the laboratory using the leaf disc technique. Some 87% of these varieties were highly susceptible and 11% moderately susceptible; just 2% showed low susceptibility. The least susceptible of all was the variety Morate (Madrid, IMIDRA). Those showing intermediate susceptibility included the varieties Sanguina (Castilla la Mancha, IVICAM), Planta Mula (Comunidad Valenciana, ITVE), Rayada Melonera (Madrid, IMIDRA), Zamarrica (Galicia, EVEGA), Cariñena Roja (Cataluña, INCAVI), Mandrègue (Aragón, DGA) and Bastardo Blanco (Extremadura, CICYTEX). The highly susceptible varieties could be differentiated into three subgroups depending on sporulation severity and density

    Variation in Susceptibility to Downy Mildew Infection in Spanish Minority Vine Varieties

    Get PDF
    Downy mildew is one of the most destructive diseases affecting grapevines (Vitis vinifera L.). Caused by the oomycete Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, it can appear anywhere where vines are cultivated. It is habitually controlled by the application of phytosanitary agents (copper-based or systemic) at different stages of the vine growth cycle. This, however, is costly, can lead to reduced yields, has a considerable environmental impact, and its overuse close to harvest can cause fermentation problems. All grapevines are susceptible to this disease, although the degree of susceptibility differs between varieties. Market demands and European legislation on viticulture and the use of phytosanitary agents (art. 14 of Directive 128/2009/EC) now make it important to know the sensitivity of all available varieties, including minority varieties. Such knowledge allows for a more appropriate use of phytosanitary agents, fosters the commercial use of these varieties and thus increases the offer of wines associated with different terroirs, and helps identify material for use in crop improvement programmes via crossing or genetic transformation, etc. Over 2020–2021, the susceptibility to P. viticola of 63 minority vine varieties from different regions of Spain was examined in the laboratory using the leaf disc technique. Some 87% of these varieties were highly susceptible and 11% moderately susceptible; just 2% showed low susceptibility. The least susceptible of all was the variety Morate (Madrid, IMIDRA). Those showing intermediate susceptibility included the varieties Sanguina (Castilla la Mancha, IVICAM), Planta Mula (Comunidad Valenciana, ITVE), Rayada Melonera (Madrid, IMIDRA), Zamarrica (Galicia, EVEGA), Cariñena Roja (Cataluña, INCAVI), Mandrègue (Aragón, DGA) and Bastardo Blanco (Extremadura, CICYTEX). The highly susceptible varieties could be differentiated into three subgroups depending on sporulation severity and density.This work, performed by the VIOR (Viticultura, Olivo y Rosa) group of the Misión Biológica de Galicia (CSIC), forms part of the project “Valorización de variedades minoritarias de vid por su potencial para la diversificación vitivinícola. Resiliencia a enfermedades fúngicas influenciadas por el cambio climático” (MINORVIN) (RTI 2018-101085-RC32), funded by MCIN/AEI/, 10.13039/501100011033 and the European Regional Development Fund.info:eu-repo/semantics/publishedVersio
    corecore