13,564 research outputs found

    Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

    Get PDF
    Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x)V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xix_{i}. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential UoptU_{opt} that yields a maximal average soliton velocity. UoptU_{opt} essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Specific heat studies of pure Nb3Sn single crystals at low temperature

    Full text link
    Specific heat measurements performed on high purity vapor-grown Nb3_3Sn crystals show clear features related to both the martensitic and superconducting transitions. Our measurements indicate that the martensitic anomaly does not display hysteresis, meaning that the martensitic transition could be a weak first or a second order thermodynamic transition. Careful measurements of the two transition temperatures display an inverse correlation between both temperatures. At low temperature specific heat measurements show the existence of a single superconducting energy gap feature.Comment: Accepted in Journal of Physics: Condensed Matte

    Orbit determination of Transneptunian objects and Centaurs for the prediction of stellar occultations

    Full text link
    The prediction of stellar occultations by Transneptunian objects and Centaurs is a difficult challenge that requires accuracy both in the occulted star position as for the object ephemeris. Until now, the most used method of prediction involving tens of TNOs/Centaurs was to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris. This offset is determined as the difference between the most recent observations of the TNO and the reference ephemeris. This method can be successfully applied when the offset remains constant with time. This paper presents an alternative method of prediction based on a new accurate orbit determination procedure, which uses all the available positions of the TNO from the Minor Planet Center database plus sets of new astrometric positions from unpublished observations. The orbit determination is performed through a numerical integration procedure (NIMA), in which we develop a specific weighting scheme. The NIMA method was applied for 51 selected TNOs/Centaurs. For this purpose, we have performed about 2900 new observations during 2007-2014. Using NIMA, we succeed in predicting the stellar occultations of 10 TNOs and 3 Centaurs between 2013 and 2015. By comparing the NIMA and JPL ephemerides, we highlighted the variation of the offset between them with time. Giving examples, we show that the constant offset method could not accurately predict 6 out of the 13 observed positive occultations successfully predicted by NIMA. The results indicate that NIMA is capable of efficiently refine the orbits of these bodies. Finally, we show that the astrometric positions given by positive occultations can help to further refine the orbit of the TNO and consequently the future predictions. We also provide the unpublished observations of the 51 selected TNOs and their ephemeris in a usable format by the SPICE library.Comment: 12 pages, 9 figures, accepted in A&

    Comment on "Evidence for Neutrinoless Double Beta Decay"

    Get PDF
    We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.Comment: A comment written to Modern Physics Letters A. 4 pages, no figures. Updated version, accepted for publicatio

    PG 1018−047 : the longest period subdwarf B binary

    Get PDF
    About 50 per cent of all known hot subdwarf B stars (sdBs) reside in close (short-period) binaries, for which common-envelope ejection is the most likely formation mechanism. However, Han et al. predict that the majority of sdBs should form through stable mass transfer leading to long-period binaries. Determining orbital periods for these systems is challenging and while the orbital periods of ∼100 short-period systems have been measured, there are no periods measured above 30 d. As part of a large programme to characterize the orbital periods of sdB binaries and their formation history, we have found that PG 1018−047 has an orbital period of 759.8 ± 5.8 d, easily making it the longest period ever detected for a sdB binary. Exploiting the Balmer lines of the subdwarf primary and the narrow absorption lines of the companion present in the spectra, we derive the radial velocity amplitudes of both stars, and estimate the mass ratio MMS/MsdB= 1.6 ± 0.2. From the combination of visual and infrared photometry, the spectral type of the companion star is determined to be mid-K
    corecore