128 research outputs found

    Health-5G: A Mixed Reality-Based System for Remote Medical Assistance in Emergency Situations

    Get PDF
    Mixed reality is the combination of virtual and augmented reality to interactively and believably merge physical and computer-generated environments. This paper discusses the design of Health5G, a scalable mixed reality-based system that facilitates and supports emergency response by medical emergency teams. Health-5G is supported by a distributed architecture divided into four interrelated applications responsible for advanced computer-human interaction, effective real-time videoconference, medical device integration, and communication infrastructure, respectively. The mixed reality layer is provided by the headset Microsoft Hololens 2™. Health-5G is based on scenarios in which emergency personnel wear mixed reality glasses that can transmit audio, video, and data streams bidirectionally over a 5G network to medical specialists stationed in a hospital at any distance. Thanks to Health-5G, the specialist will be able to access the emergency team’s point of view at any time and provide verbal and visual instructions, including gestures and positioning of graphical markers in 3D space. In this way, emergency personnel can provide the best possible care to the patient without having to wait for them to arrive at the hospital, saving a lot of time in scenarios where every second can make a difference. Health-5G also addresses the integration of medical devices and the collection of the patient’s medical data in a scalable way through optical character recognition. A case study is discussed where Health-5G is used to attend a patient in the street suffering from syncope due to third-degree atrioventricular block. Latency and performance tests over a 5G network are also discussed. To the best of our knowledge, there is no comprehensive solution in the literature that provides all the capabilities offered by Health-5G in terms of functionality and advanced interaction mechanisms within the context of remote, immersive support in emergency situations

    Assessment of greenhouse emissions of the green bean through the static enclosure technique

    Get PDF
    : Urban green installations are extensively promoted to increase sustainable and accessible food production and simultaneously improve the environmental performance and liveability of city buildings. In addition to the multiple benefits of plant retrofitting, these installations may lead to a consistent increase in biogenic volatile organic compounds (BVOCs) in the urban environment, especially indoors. Accordingly, health concerns could limit the implementation of building-integrated agriculture. In a building-integrated rooftop greenhouse (i-RTG), throughout the whole hydroponic cycle, green bean emissions were dynamically collected in a static enclosure. Four representative BVOCs, α-pinene (monoterpene), β-caryophyllene (sesquiterpene), linalool (oxygenated monoterpene) and cis-3-hexenol (LOX derivate), were investigated in the samples collected from two equivalent sections of a static enclosure, one empty and one occupied by the i-RTG plants, to estimate the volatile emission factor (EF). Throughout the season, extremely variable BVOC levels between 0.04 and 5.36 ppb were found with occasional but not significant (P > 0.05) variations between the two sections. The highest emission rates were observed during plant vegetative development, with EFs equivalent to 78.97, 75.85 and 51.34 ng g-1 h-1 for cis-3-hexenol, α-pinene, and linalool, respectively; at plant maturity, all volatiles were either close to the LLOQ (lowest limit of quantitation) or not detected. Consistent with previous studies significant relationships (r ≥ 0.92; P < 0.05) were individuated within volatiles and temperature and relative humidity of the sections. However, correlations were all negative and were mainly attributed to the relevant effect of the enclosure on the final sampling conditions. Overall, levels found were at least 15 folds lower than the given Risk and LCI values of the EU-LCI protocol for indoor environments, suggesting low BVOC exposure in the i-RTG. Statistical outcomes demonstrated the applicability of the static enclosure technique for fast BVOC emissions survey inside green retrofitted spaces. However, providing high sampling performance over entire BVOCs collection is recommended to reduce sampling error and incorrect estimation of the emissions

    The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    Get PDF
    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER). This work was also supported by the National Institute of General Medical Science of the National Institutes of Health under award number R01GM095826 to LJS, and by the National Science Foundation under award number MCB0742976 to LJS. JMD and JP received a fellowship from Junta de Andalucía to do some work at University of Georgia

    A seasonal cycle of terrestrial inputs in Lake Van, Turkey

    Get PDF
    Abstract Lake Van in Turkey is the world's largest soda lake (607 km 3 ). The lake's catchment area is estimated to be ∼12,500 km 2 , and the terrestrial input is carried through eolian, riverine, snowmelt and anthropogenic paths. Extent and seasonality of the terrestrial inputs to the lake have not been studied, but it is essential to evaluate its environmental status and to assess the use of environmental proxies to estimate the lake's response to climate changes. This study aims to measure seasonal changes in terrestrial input of natural and anthropogenic origin as recorded by the fluxes of pollen and biomarkers of soil bacteria and vascular or higher plants, as well as petrogenic biomarkers in monthly resolved sediment traps from August 2006 to July 2007. Fluxes of pollen, soil and higher plant biomarkers seem to be related to precipitation and snowmelt in autumn and spring. In addition, dust storms, which are common during the summer months, may have resulted in long-distance transport. Anthropogenic biomarker fluxes indicate yearround petrogenic contamination although some mature biomarker fluxes are higher in summer and in late winterspring. The relative changes between petrogenic markers indicate variations in the pollutant sources

    Early outcome of a 31-gene expression profile test in 86 AJCC stage IB-II melanoma patients. A prospective multicentre cohort study

    Get PDF
    Background: The clinical and pathological features of primary melanoma are not sufficiently sensitive to accurately predict which patients are at a greater risk of relapse. Recently, a 31-gene expression profile (DecisionDx-Melanoma) test has shown promising results. Objectives: To evaluate the early prognostic performance of a genetic signature in a multicentre prospectively evaluated cohort. Methods: Inclusion of patients with AJCC stages IB and II conducted between April 2015 and December 2016. All patients were followed up prospectively to assess their risk of relapse. Prognostic performance of this test was evaluated individually and later combined with the AJCC staging system. Prognostic accuracy of disease-free survival was determined using Kaplan-Meier curves and Cox regression analysis. Results of the gene expression profile test were designated as Class 1 (low risk) and Class 2 (high risk). Results: Median follow-up time was 26 months (IQR 22-30). The gene expression profile test was performed with 86 patients; seven had developed metastasis (8.1%) and all of them were in the Class 2 group, representing 21.2% of this group. Gene expression profile was an independent prognostic factor for relapse as indicated by multivariate Cox regression analysis, adjusted for AJCC stages and age. Conclusions: This prospective multicentre cohort study, performed in a Spanish Caucasian cohort, shows that this 31-gene expression profile test could correctly identify patients at early AJCC stages who are at greater risk of relapse. We believe that gene expression profile in combination with the AJCC staging system could well improve the detection of patients who need intensive surveillance and optimize follow-up strategies

    Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma

    Get PDF
    PURPOSE: Assessing measurable residual disease (MRD) has become standard with many tumors, but the clinical meaning of MRD in multiple myeloma (MM) remains uncertain, particularly when assessed by next-generation flow (NGF) cytometry. Thus, we aimed to determine the applicability and sensitivity of the flow MRD-negative criterion defined by the International Myeloma Working Group (IMWG). PATIENTS AND METHODS: In the PETHEMA/GEM2012MENOS65 trial, 458 patients with newly diagnosed MM had longitudinal assessment of MRD after six induction cycles with bortezomib, lenalidomide, and dexamethasone (VRD), autologous transplantation, and two consolidation courses with VRD. MRD was assessed in 1, 100 bone marrow samples from 397 patients; the 61 patients without MRD data discontinued treatment during induction and were considered MRD positive for intent-to-treat analysis. The median limit of detection achieved by NGF was 2.9 × 10-6. Patients received maintenance (lenalidomide ± ixazomib) according to the companion PETHEMA/GEM2014MAIN trial. RESULTS: Overall, 205 (45%) of 458 patients had undetectable MRD after consolidation, and only 14 of them (7%) have experienced progression thus far; seven of these 14 displayed extraosseous plasmacytomas at diagnosis and/or relapse. Using time-dependent analysis, patients with undetectable MRD had an 82% reduction in the risk of progression or death (hazard ratio, 0.18; 95% CI, 0.11 to 0.30; P < .001) and an 88% reduction in the risk of death (hazard ratio, 0.12; 95% CI, 0.05 to 0.29; P < .001). Timing of undetectable MRD (after induction v intensification) had no impact on patient survival. Attaining undetectable MRD overcame poor prognostic features at diagnosis, including high-risk cytogenetics. By contrast, patients with Revised International Staging System III status and positive MRD had dismal progression-free and overall survivals (median, 14 and 17 months, respectively). Maintenance increased the rate of undetectable MRD by 17%. CONCLUSION: The IMWG flow MRD-negative response criterion is highly applicable and sensitive to evaluate treatment efficacy in MM

    Development of a clinical decision model for thyroid nodules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid nodules represent a common problem brought to medical attention. Four to seven percent of the United States adult population (10–18 million people) has a palpable thyroid nodule, however the majority (>95%) of thyroid nodules are benign. While, fine needle aspiration remains the most cost effective and accurate diagnostic tool for thyroid nodules in current practice, over 20% of patients undergoing FNA of a thyroid nodule have indeterminate cytology (follicular neoplasm) with associated malignancy risk prevalence of 20–30%. These patients require thyroid lobectomy/isthmusectomy purely for the purpose of attaining a definitive diagnosis. Given that the majority (70–80%) of these patients have benign surgical pathology, thyroidectomy in these patients is conducted principally with diagnostic intent. Clinical models predictive of malignancy risk are needed to support treatment decisions in patients with thyroid nodules in order to reduce morbidity associated with unnecessary diagnostic surgery.</p> <p>Methods</p> <p>Data were analyzed from a completed prospective cohort trial conducted over a 4-year period involving 216 patients with thyroid nodules undergoing ultrasound (US), electrical impedance scanning (EIS) and fine needle aspiration cytology (FNA) prior to thyroidectomy. A Bayesian model was designed to predict malignancy in thyroid nodules based on multivariate dependence relationships between independent covariates. Ten-fold cross-validation was performed to estimate classifier error wherein the data set was randomized into ten separate and unique train and test sets consisting of a training set (90% of records) and a test set (10% of records). A receiver-operating-characteristics (ROC) curve of these predictions and area under the curve (AUC) were calculated to determine model robustness for predicting malignancy in thyroid nodules.</p> <p>Results</p> <p>Thyroid nodule size, FNA cytology, US and EIS characteristics were highly predictive of malignancy. Cross validation of the model created with Bayesian Network Analysis effectively predicted malignancy [AUC = 0.88 (95%CI: 0.82–0.94)] in thyroid nodules. The positive and negative predictive values of the model are 83% (95%CI: 76%–91%) and 79% (95%CI: 72%–86%), respectively.</p> <p>Conclusion</p> <p>An integrated predictive decision model using Bayesian inference incorporating readily obtainable thyroid nodule measures is clinically relevant, as it effectively predicts malignancy in thyroid nodules. This model warrants further validation testing in prospective clinical trials.</p

    The Role of Age and Exposure to Plasmodium falciparum in the Rate of Acquisition of Naturally Acquired Immunity: A Randomized Controlled Trial

    Get PDF
    Background: The rate of acquisition of naturally acquired immunity (NAI) against malaria predominantly depends on transmission intensity and age, although disentangling the effects of these is difficult. We used chemoprophylaxis to selectively control exposure to P. falciparum during different periods in infancy and explore the effect of age in the build-up of NAI, measured as risk of clinical malaria.\ud \ud Methods and Findings: A three-arm double-blind randomized placebo-controlled trial was conducted in 349 infants born to Mozambican HIV-negative women. The late exposure group (LEG) received monthly Sulfadoxine-Pyrimethamine (SP) plus Artesunate (AS) from 2.5–4.5 months of age and monthly placebo from 5.5–9.5 months; the early exposure group (EEG) received placebo from 2.5–4.5 months and SP+AS from 5.5–9.5 months; and the control group (CG) received placebo from 2.5–9.5 months. Active and passive case detection (PCD) were conducted from birth to 10.5 and 24 months respectively. The primary endpoint was time to first or only episode of malaria in the second year detected by PCD. The incidence of malaria during the second year was of 0.50, 0.51 and 0.35 episodes/PYAR in the LEG, EEG and CG respectively (p = 0.379 for the adjusted comparison of the 3 groups). The hazard ratio of the adjusted comparison between the LEG and the CG was 1.38 (0.83–2.28, p = 0.642) and that between the EEG and the CG was 1.35 (0.81–2.24, p = 0.743).\ud \ud Conclusions: After considerably interfering with exposure during the first year of life, there was a trend towards a higher risk of malaria in the second year in children who had received chemoprophylaxis, but there was no significant rebound. No evidence was found that the age of first exposure to malaria affects the rate of acquisition of NAI. Thus, the timing of administration of antimalarial interventions like malaria vaccines during infancy does not appear to be a critical determinant
    corecore