834 research outputs found

    Three dimensional anatomy of the anterior cruciate ligament: a new approach in anatomical orthopedic studies and a literature review

    Get PDF
    Background: The anterior cruciate ligament (ACL) is an important structure in the knee. The ACL does not heal following lesions, and surgical reconstruction is the standard treatment among athletes. Some steps of ACL reconstruction remain controversial. It is important to fully understand the anatomy of the ACL to accurately reproduce its anatomy during surgical reconstructions. The purpose of this study was to evaluate the use of anaglyphic images that produce 3D images to better visualize the anatomy of the ACL, and to highlight the anatomical features of this ligament as reported in the literature.Methods: We included ten knees in this study. After dissection of the knee structures, pictures were acquired using a camera with Nikon D40, AF-S Nikkor 18-55 mm (1:3.5-5.6 G2 ED), and Micro Nikkor 105 mm (1:2.8) lenses. The pair of images was processed using Callipyan 3D Anabuilder software, which transforms the two images into one anaglyphic image.Results: During the dissection of the knees, nine pictures were acquired and transformed into anaglyphic images.Conclusion: This study, demonstrated that the use of 3D images is a useful tool that can improve the knowledge of the anatomy of the knee, while also facilitating knee reconstruction surgery

    Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    Get PDF
    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error

    Detection of Central Visual Field Defects in Early Glaucomatous Eyes: comparison of Humphrey and Octopus perimetry

    Get PDF
    Purpose: To compare the detection rate of central visual field defect (CVFD) between the 30-degree Octopus G1 program (Dynamic strategy) and the HFA 10–2 SITA-Standard test in early glaucoma eyes not showing any CVFD on the HFA 24–2 SITA-Standard test. Methods: One eye of 41 early glaucoma patients without CVFD in the central 10 on HFA 24–2 test was tested with both the HFA 10–2 test and the Octopus G1 program 15 minutes apart, in random order. The primary outcome measure was the comparison of CVFD detection rates. Secondary outcome measures comprised the agreement in detecting CVFD, and the comparison of test durations and the numbers of depressed test points outside the central 10-degree area between the HFA 24–2 test and the Octopus G1 program. Results: The mean age of the population was 65.2±10.1 years, and the mean deviation with HFA 24–2 was -3.26±2.6 dB. The mean test duration was not significantly different between the tests (p = 0.13). A CVFD was present in 33 (80.4%) HFA 10–2 test and in 23 (56.0%) Octopus G1 tests (p = 0.002). The overall agreement between the HFA 10–2 and Octopus G1 examinations in classifying eyes as having or not having CVFD was moderate (Cohen’s kappa 0.47). The Octopus G1 program showed 69.6% sensitivity and 100% specificity to detect CVFD in eyes where the HFA 10–2 test revealed a CVFD. The number of depressed test points (p<5%) outside the central 10 area detected with the Octopus G1 program (19.68±10.6) was significantly higher than that detected with the HFA 24–2 program (11.95±5.5, p<0.001). Conclusion: Both HFA 10–2 and Octopus G1programs showed CVFD not present at HFA 24–2 test although the agreement was moderate. The use of a single Octopus G1 examination may represent a practical compromise for the assessment of both central and peripheral visual field up to 30 eccentricity without any additional testing and increasing the total investigation time

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Biological evaluation of hydroxynaphthoquinones as anti-malarials

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud The hydroxynaphthoquinones have been extensively investigated over the past 50 years for their anti-malarial activity. One member of this class, atovaquone, is combined with proguanil in Malarone®, an important drug for the treatment and prevention of malaria.\ud \ud \ud \ud Methods\ud Anti-malarial activity was assessed in vitro for a series of 3-alkyl-2-hydroxy-1,4-naphthoquinones (N1-N5) evaluating the parasitaemia after 48 hours of incubation. Potential cytotoxicity in HEK293T cells was assessed using the MTT assay. Changes in mitochondrial membrane potential of Plasmodium were measured using the fluorescent dye Mitrotracker Red CMXROS.\ud \ud \ud \ud Results\ud Four compounds demonstrated IC50s in the mid-micromolar range, and the most active compound, N3, had an IC50 of 443 nM. N3 disrupted mitochondrial membrane potential, and after 1 hour presented an IC50ΔΨmit of 16 μM. In an in vitro cytotoxicity assay using HEK 293T cells N3 demonstrated no cytotoxicity at concentrations up to 16 μM.\ud \ud \ud \ud Conclusions\ud N3 was a potent inhibitor of mitochondrial electron transport, had nanomolar activity against cultured Plasmodium falciparum and showed minimal cytotoxicity. N3 may serve as a starting point for the design of new hydroxynaphthoquinone anti-malarials.This work was supported by FAPESP (Fundação de Amparo a Pesquisa de São Paulo) (07/52924-0), by Malaria Pronex, and by a INCT-INBqMed (Instituto Nacional de Ciência e Tecnologia- Instituto Nacional de Ciência e Tecnologia de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosa) grant. C.R.S. Garcia and V. Ferreira are CNPQ (Conselho Nacional de Pesquisa) fellows. D.S. received a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) Fellowship. D.R. da Rocha thanks FAPERJ (Fundação de Amparo a Pesquisa do Rio De Janeiro) for their doctoral fellowship. LNC and MM received a FAPESP Fellowship. Thanks are due to the CNPQ, CAPES and FAPERJ for funding this work.This work was supported by FAPESP (Fundação de Amparo a Pesquisa de São Paulo) (07/529240), by Malaria Pronex, and by a INCTINBqMed (Instituto Nacional de Ciência e Tecnologia Instituto Nacional de Ciência e Tecnologia de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosa) grant. C.R.S. Garcia and V. Ferreira are CNPQ (Conselho Nacional de Pesquisa) fellows. D.S. received a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) Fellowship. D.R. da Rocha thanks FAPERJ (Fundação de Amparo a Pesquisa do Rio De Janeiro) for their doctoral fellowship. LNC and MM received a FAPESP Fellowship. Thanks are due to the CNPQ, CAPES and FAPERJ for funding this work

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p&lt;0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)

    Get PDF
    Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research

    Human aging and somatic point mutations in mtDNA: A comparative study of generational differences (grandparents and grandchildren)

    Get PDF
    The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop) of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years) and their 62 grandchildren (mean age: 15 ± 4.1 years), the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old) mutations (homoplasia and heteroplasmy). It is possible that both of these situations (homoplasia and heteroplasmy) were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life
    corecore