41 research outputs found
Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice
Microglia are strongly implicated in the development and progression of Alzheimer's disease (AD), yet their impact on pathology and lifespan remains unclear. Here we utilize a CSF1R hypomorphic mouse to generate a model of AD that genetically lacks microglia. The resulting microglial-deficient mice exhibit a profound shift from parenchymal amyloid plaques to cerebral amyloid angiopathy (CAA), which is accompanied by numerous transcriptional changes, greatly increased brain calcification and hemorrhages, and premature lethality. Remarkably, a single injection of wild-type microglia into adult mice repopulates the microglial niche and prevents each of these pathological changes. Taken together, these results indicate the protective functions of microglia in reducing CAA, blood-brain barrier dysfunction, and brain calcification. To further understand the clinical implications of these findings, human AD tissue and iPSC-microglia were examined, providing evidence that microglia phagocytose calcium crystals, and this process is impaired by loss of the AD risk gene, TREM2
Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors
Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces
EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment
During 2007-2010, 13 545 confirmed human VTEC infections and 777 haemolytic uraemic syndrome (HUS) cases were reported in the EU; isolates from 85 % of cases were not fully serotyped and therefore could not be classified using the Karmali seropathotype concept. Seropathotype group D covered 5 % of isolates from fully serotyped cases; 14 cases (0.7 %) belonged to seropathotype group E, defined by Karmali et al. (2003) as non-human only. Isolates from around 27 % of cases could not be assigned. There were no HUS cases reported for the serotypes in groups D and E but 17 HUS cases could not be assigned. The health outcome was reported for only a fraction of confirmed cases. About 64 % of patients presented with only diarrhoea; VTEC infection resulted in HUS in around 10 % of cases. The new ISO/TS 13136:2012 standard improves the detection of VTEC in food. An alternative concept based on the detection of verocytotoxins alone or genes encoding such verocytotoxins does not provide a sound scientific basis on which to assess risk to the consumer because there is no single or combination of marker(s) that fully define a ‘pathogenic’ VTEC. Strains positive for verocytotoxin 2 gene(vtx2)- and eae (intimin production)- or [aaiC (secreted protein of EAEC) plus aggR (plasmid-encoded regulator)] genes are associated with higher risk of more severe illness than other virulence gene combinations. The 2011 O104:H4 outbreak demonstrated the difficulty of predicting the emergence of ‘new’ pathogenic VTEC types by screening only for the eae gene or by focusing on a restricted panel of serogroups. A molecular approach utilising genes encoding virulence characteristics additional to the presence of vtx genes has been proposed
Recommended from our members
Investigating the molecular landscape of neurodegeneration with cellular and spatial genomics
Neurodegeneration is a key feature of several neurological disorders and is characterized by systemic loss of neural structures and functions in the central nervous system. A diverse panel of environmental and heritable factors contribute to the development of neurodegen- erative phenotypes. Alzheimer’s disease, the most prevalent neurodegenerative disorder, is a complex polygenic disease that progressively alters the cellular and molecular makeup of the brain. A comprehensive understanding of these changes are necessary for developing future interventions and therapeutics to reverse the progression of disease or preventing it from ever occurring. In this dissertation, I leveraged several cutting-edge -omics technologies to generate high-quality molecular maps of the cell states that are dysregulated in AD. Fur- thermore, in-depth analysis of these maps have yielded numerous insights into the cellular phase of disease, especially regarding the relationship between genetics and cellular states. First, I used single-nucleus epigenomic and transcriptomic sequencing in postmortem human cortical tissue from late-stage AD donors and cognitively normal controls to deeply charac- terize changes in the gene regulatory landscape throughout disease. Next, I applied spatial transcriptomics to investigate changes with respect to amyloid pathologies in early-stage and late-stage AD, as well as AD in Down Syndrome. These studies led to numerous find- ings implicating a role for oligodendrocytes in neurodegeneration, thus prompting the final study. I leveraged mouse experiments where we used single-nucleus epigenomics and tran- scriptomics to track the molecular changes involved in remyelination, and to understand how the dynamics of oligodendrogenesis change with aging. Altogether, this dissertation provides foundational knowledge of gene-regulatory circuitry in neurodegeneration with cellular and spatial resolution
Systems biology approaches to unravel the molecular and genetic architecture of Alzheimer's disease and related tauopathies
Over the years, genetic studies have identified multiple genetic risk variants associated with neurodegenerative disorders and helped reveal new biological pathways and genes of interest. However, genetic risk variants commonly reside in non-coding regions and may regulate distant genes rather than the nearest gene, as well as a gene's interaction partners in biological networks. Systems biology and functional genomics approaches provide the framework to unravel the functional significance of genetic risk variants in disease. In this review, we summarize the genetic and transcriptomic studies of Alzheimer's disease and related tauopathies and focus on the advantages of performing systems-level analyses to interrogate the biological pathways underlying neurodegeneration. Finally, we highlight new avenues of multi-omics analysis with single-cell approaches, which provide unparalleled opportunities to systematically explore cellular heterogeneity, and present an example of how to integrate publicly available single-cell datasets. Systems-level analysis has illuminated the function of many disease risk genes, but much work remains to study tauopathies and to understand spatiotemporal gene expression changes of specific cell types
Protocol for single-nucleus ATAC sequencing and bioinformatic analysis in frozen human brain tissue.
Single-nucleus ATAC sequencing (snATAC-seq) employs a hyperactive Tn5 transposase to gain precise information about the cis-regulatory elements in specific cell types. However, the standard protocol of snATAC-seq is not optimized for all tissues, including the brain. Here, we present a modified protocol for single-nuclei isolation from postmortem frozen human brain tissue, followed by snATAC-seq library preparation and sequencing. We also describe an integrated bioinformatics analysis pipeline using an R package (ArchRtoSignac) to robustly analyze snATAC-seq data. For complete details on the use and execution of this protocol, please refer to Morabito et al. (2021)
Cortical diurnal rhythms remain intact with microglial depletion.
Microglia are subject to change in tandem with the endogenously generated biological oscillations known as our circadian rhythm. Studies have shown microglia harbor an intrinsic molecular clock which regulates diurnal changes in morphology and influences inflammatory responses. In the adult brain, microglia play an important role in the regulation of condensed extracellular matrix structures called perineuronal nets (PNNs), and it has been suggested that PNNs are also regulated in a circadian and diurnal manner. We sought to determine whether microglia mediate the diurnal regulation of PNNs via CSF1R inhibitor dependent microglial depletion in C57BL/6J mice, and how the absence of microglia might affect cortical diurnal gene expression rhythms. While we observe diurnal differences in microglial morphology, where microglia are most ramified at the onset of the dark phase, we do not find diurnal differences in PNN intensity. However, PNN intensity increases across many brain regions in the absence of microglia, supporting a role for microglia in the regulation of PNNs. Here, we also show that cortical diurnal gene expression rhythms are intact, with no cycling gene changes without microglia. These findings demonstrate a role for microglia in the maintenance of PNNs, but not in the maintenance of diurnal rhythms