5,535 research outputs found

    Maze solvers demystified and some other thoughts

    Full text link
    There is a growing interest towards implementation of maze solving in spatially-extended physical, chemical and living systems. Several reports of prototypes attracted great publicity, e.g. maze solving with slime mould and epithelial cells, maze navigating droplets. We show that most prototypes utilise one of two phenomena: a shortest path in a maze is a path of the least resistance for fluid and current flow, and a shortest path is a path of the steepest gradient of chemoattractants. We discuss that substrates with so-called maze-solving capabilities simply trace flow currents or chemical diffusion gradients. We illustrate our thoughts with a model of flow and experiments with slime mould. The chapter ends with a discussion of experiments on maze solving with plant roots and leeches which show limitations of the chemical diffusion maze-solving approach.Comment: This is a preliminary version of the chapter to be published in Adamatzky A. (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Health system performance assessment in small countries: The case study of Latvia

    Get PDF
    Managing the complexity that characterizes health systems requires sophisticated performance assessment information to support the decision‐making processes of healthcare stakeholders at various levels. Accordingly, in the past few decades, many countries have designed and implemented health system performance assessment (HSPA) programmes. Literature and practice agree on the key features that performance measurement in health should have, namely, multidimensionality, evidence‐based data collection, systematic benchmarking of results, shared design, transparent disclosure, and timeliness. Nevertheless, the specific characteristics of different countries may pose challenges in the implementation of such programmes. In the case of small countries, many of these challenges are common and related to their inherent characteristics, eg, small populations, small volumes of activity for certain treatments, and lack of benchmarks. Through the development of the case study of Latvia, this paper aims at discussing the challenges and opportunities for assessing health system performance in a small country. As a result, for each of the performance measurement features identified by the literature, the authors discuss the issues emerging when adopting them in Latvia and set out the potential solutions that have been designed during the development of the case study

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Combining frequency and time domain approaches to systems with multiple spike train input and output

    Get PDF
    A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to specify how the interactions between the recorded processes contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex systems benefits from a combination of frequency and time domain methods

    Non-Abelian statistics and topological quantum information processing in 1D wire networks

    Get PDF
    Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.Comment: 6 pages + 17 pages of Supp. Mat.; 10 figures. Supp. Mat. has doubled in size to establish results more rigorously; many other improvements as wel

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic Μ=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Focused Deterrence and the Prevention of Violent Gun Injuries: Practice, Theoretical Principles, and Scientific Evidence

    Get PDF
    Focused deterrence strategies are a relatively new addition to a growing portfolio of evidence-based violent gun injury prevention practices available to policy makers and practitioners. These strategies seek to change offender behavior by understanding the underlying violence-producing dynamics and conditions that sustain recurring violent gun injury problems and by implementing a blended strategy of law enforcement, community mobilization, and social service actions. Consistent with documented public health practice, the focused deterrence approach identifies underlying risk factors and causes of recurring violent gun injury problems, develops tailored responses to these underlying conditions, and measures the impact of implemented interventions. This article reviews the practice, theoretical principles, and evaluation evidence on focused deterrence strategies. Although more rigorous randomized studies are needed, the available empirical evidence suggests that these strategies generate noteworthy gun violence reduction impacts and should be part of a broader portfolio of violence prevention strategies available to policy makers and practitioners

    Cavity QED with a Bose-Einstein condensate

    Full text link
    Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature; updated Fig. 4; changed atom numbers due to new calibratio

    Bioinspired Precision Engineering of Three‐Dimensional Epithelial Stem Cell Microniches

    Get PDF
    Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two‐photon polymerization (2PP) is a valuable tool for fabricating 3D micro/nanostructures for stem cell niche engineering applications. Herein, biomimetic gelatin methacrylate‐based constructs, replicating the precise geometry of the limbal epithelial crypt structures (limbal stem cell “microniches”) as an exemplar epithelial niche, are fabricated using 2PP. Human limbal epithelial stem cells (hLESCs) are seeded within the microniches in xeno‐free conditions to investigate their ability to repopulate the crypts and the expression of various differentiation markers. Cell proliferation and a zonation in cell phenotype along the z‐axis are observed without the use of exogenous signaling molecules. Significant differences in cell phenotype between cells located at the base of the microniche and those situated towards the rim are observed, demonstrating that stem cell fate is strongly influenced by its location within a niche and the geometrical details of where it resides. This study provides insight into the influence of the niche’s spatial geometry on hLESCs and demonstrates a flexible approach for the fabrication of biomimetic crypt‐like structures in epithelial tissues. This has significant implications for regenerative medicine applications and can ultimately lead to implantable synthetic “niche‐based” treatments
    • 

    corecore