Cavity quantum electrodynamics (cavity QED) describes the coherent
interaction between matter and an electromagnetic field confined within a
resonator structure, and is providing a useful platform for developing concepts
in quantum information processing. By using high-quality resonators, a strong
coupling regime can be reached experimentally in which atoms coherently
exchange a photon with a single light-field mode many times before dissipation
sets in. This has led to fundamental studies with both microwave and optical
resonators. To meet the challenges posed by quantum state engineering and
quantum information processing, recent experiments have focused on laser
cooling and trapping of atoms inside an optical cavity. However, the tremendous
degree of control over atomic gases achieved with Bose-Einstein condensation
has so far not been used for cavity QED. Here we achieve the strong coupling of
a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse
optical cavity and present a measurement of its eigenenergy spectrum. This is a
conceptually new regime of cavity QED, in which all atoms occupy a single mode
of a matter-wave field and couple identically to the light field, sharing a
single excitation. This opens possibilities ranging from quantum communication
to a wealth of new phenomena that can be expected in the many-body physics of
quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature;
updated Fig. 4; changed atom numbers due to new calibratio