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Abstract A frequency domain approach and a time domain
approach have been combined in an investigation of the
behaviour of the primary and secondary endings of an iso-
lated muscle spindle in response to the activity of two static
fusimotor axons when the parent muscle is held at a fixed
length and when it is subjected to random length changes. The
frequency domain analysis has an associated error process
which provides a measure of how well the input processes
can be used to predict the output processes and is also used to
specify how the interactions between the recorded processes
contribute to this error. Without assuming stationarity of the
input, the time domain approach uses a sequence of proba-
bility models of increasing complexity in which the number
of input processes to the model is progressively increased.
This feature of the time domain approach was used to iden-
tify a preferred direction of interaction between the processes
underlying the generation of the activity of the primary and
secondary endings. In the presence of fusimotor activity and
dynamic length changes imposed on the muscle, it was shown
that the activity of the primary and secondary endings carried
different information about the effects of the inputs imposed
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on the muscle spindle. The results presented in this work
emphasise that the analysis of the behaviour of complex
systems benefits from a combination of frequency and time
domain methods.
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1 Introduction

The behaviour of networks of neurons is commonly described
in terms of the strength of association between pairs of neu-
rons within the network, an assessment of their timing rela-
tions and the identification of those neurons which interact
directly or are influenced by common inputs. Consistent with
the view presented by Segundo (Cox et al. 1975), what is
required is an approach which characterises the behaviour of
a network as a single object as opposed to that of pairwise
measures.

Pepe Segundo, beginning with his work on aplysia (see,
Moore this issue), worked at the interface between Neuro-
science and Statistics and continued this type of work for
the majority of his career. The work presented here contrib-
utes to that endeavour and at the same time illustrates that
work of this kind will necessarily contribute to both fields.
We shall outline two approaches for analysing the behaviour
of networks of neurons based on a generalised linear model
relating vectors of input and output processes in which the
components of these vectors can be either continuous or point
process signals.

The first model is formulated in terms of Fourier trans-
forms, and its performance is described by how well it pre-
dicts output network behaviour. It is shown that the spectral
density matrix of the output processes can be decomposed
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Fig. 1 Diagrammatic
representation of a muscle
spindle illustrating the three
types of intrafusal muscle fibre
(Db1 dynamic bag1, Sb2 static
bag2 and chain fibres), their
motor innovation (γ -dynamic
and γ -static fusimotor axons),
and the primary (Ia) and
secondary (II) sensory endings.
The small inserts in Figs. 3 and
4 may be interpreted in terms of
this figure

into a series of spectral density matrices. The sum of these
matrices, each weighted by a factor which may be interpreted
as a generalised coherence, forms the spectral density matrix
of the error process for the network model. The measure of
size of the error process is taken to be the largest eigenvalue
(Hermitian norm) of the spectral density matrix of the output
process. Departures of the Hermitian norm of the error pro-
cess from its maximum value provides a measure of the ade-
quacy of the linear model. The causes for these departures
can be explained by the behaviour of the eigenvalues in the
expansion of the spectrum of the error process. The structure
of these eigenvalues reflects the influence of connectivity
within the network.

The second model is based on the complete intensity func-
tion of the output processes given the history of the input and
output processes. This model is an adaptation of that used
in Brillinger and Segundo (1979) and Brillinger (1992), but
applied to the mammalian muscle spindle under conditions
of multiple input and multiple output. The estimates of the
parameters of this model are based on a likelihood function
and therefore may be anticipated to be reasonably efficient.
Further, these estimates may be expected to highlight differ-
ent aspects of the system behaviour than those highlighted
by the Fourier method. An advantage of the second approach
is that the input can be nonstationary and other explanatory
variables introduced directly.

Whereas the first model examines the global behaviour of
the system, the second model characterises the interactions
among the recorded processes by constructing a sequence
of generalised linear models of increasing complexity pro-
gressing from single input single output to multiple input
multiple output models in which the complete intensity func-
tion is now formulated in terms of vector-valued processes.
The two approaches to network behaviour described here
are illustrated by the analysis of an experiment on an iso-
lated mammalian muscle spindle in which the data from
two input point processes and two output point process are
available for analysis. A particular feature of the analysis
is that the association of the activity between primary and

secondary muscle spindle endings is thought to be function-
ally important (Gladden and Matsuzaki 2002; Halliday et al.
1987). For example, interneurons in di-synaptic excitatory
and some inhibitory pathways from group I and group II
afferents receive inputs from both primary and secondary
muscle spindle axons (Edgley and Jankowska 1987;
Jankowska 1992; Jankowska and Hammar 2002). The effects
that these interneurons exert on the α-motoneurons would
be facilitated by associations induced between the activity
of primary and secondary muscle spindle endings controlled
by fusimotor activity and length changes imposed on the
muscle spindle. The changes in correlation between the dis-
charges of the primary and secondary endings can best be
examined when these discharges are recorded from the same
muscle spindle. In this case the effect of the controlling pro-
cesses can be associated directly with the pattern of fusimotor
innervation of the muscle spindle.

2 Isolated mammalian muscle spindle data

The examples presented in both the frequency and time
domain analyses in this work are based on an experiment
in which the primary (Ia) and secondary endings (II) from
the same muscle spindle are isolated in dorsal root filaments
(Gladden and Matsuzaki 2002; Halliday et al. 1987). Single
static fusimotor axons (γ ) were isolated in cut ventral root fil-
aments of cat spinal chord. Figure 1 provides a diagrammatic
representation of a muscle spindle illustrating the three types
of intrafusal muscle fibres along with their motor (static and
dynamic fusimotor axons) and primary (Ia) and secondary
(II) sensory axons.

Detailed descriptions of the distribution of the motor and
sensory axons to the three types of intrafusal muscle fibre are
given by Banks et al. (1981), whereas Boyd (1981) describes
the response of the primary and secondary endings to the
separate activation of each type of intrafusal muscle fibre.

The responses of the primary and secondary endings
were recorded simultaneously during stimulation of one or
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both of the two identified static gamma axons in the pres-
ence and absence of concomitant random length changes.
The fusimotor axons were stimulated by pulses with a
homogeneous exponential distribution of independent
intervals, that is a Poisson process. In some trials length
changes with a Gaussian distribution of amplitudes were
imposed on the parent muscle (tenuissimus) with simulta-
neous stimulation of the fusimotor axons. The imposed length
changes were selected to have a constant spectral density over
the range zero to 100 Hz.

The data sets consist of 60-s records of simultaneously
recorded γ1, γ2, Ia and II spike train activity in which spikes
are isolated to an interval of 1 ms duration. The results of
the analysis are based on the one experiment in which the
primary and secondary endings are isolated from the same
muscle spindle. It is not intended that these results are to
be generalised to all muscle spindles since it is the objec-
tive of this article to present a methodology suitable for the
analysis of any system with multiple inputs and output pro-
cesses, and to initiate a discussion of the biological implica-
tions of such results. The estimation procedures used in the
frequency domain approach are set out in Rosenberg et al.
(1989). Partial spectra were used to identify a network of neu-
rons as in Brillinger et al. (1976). In summary, the spectra
are estimated by dividing each 60-s record into 58 contig-
uous intervals of 1,024 ms and the estimates of the spectra
are taken to be the average of the periodograms computed for
each interval. The parameters in the time domain analysis are
estimated for a maximum lag of 50 ms using the R integrated
suite of software facilities (CRAN 2008).

3 A frequency domain approach

Let M and N be stationary and orderly vector point
processes satisfying a mixing condition. The orderly prop-
erty states that events of M and N are simple/isolated and the
mixing property states that events well separated in time are
approximately independent. The approach to spiking neural
networks taken in this section is based on the development of
the multi-dimensional point process linear model proposed
by Brillinger (1975a) and draws upon the properties of the
finite Fourier transform of a stationary process (Brillinger
1983). In this model the instantaneous vector of rates µN (t)
of the output point processes N is related to the input point
process M by the equation

µN (t) = lim
h→0+

Prob {An N -event in [t, t + h) |M}
h

= µ+
∞∫

−∞
K (t − u)dM(u) (1)

whereµ is a constant vector, K is a time-varying matrix1 with
row and column dimensions the number of processes in the
vectors N and M respectively, and dM(u) is the differential
of the vector M(u) of counting processes, which in the case of
“small” du take values of zero or one for an individual spike
train. Let PM and PN be the respective mean rates of the
processes M and N , then taking expected values of Eq. (1)
taken over realisations of the processes M and N gives

PN = µ+
∞∫

−∞
K (t − u) PM du. (2)

The elimination of µ between Eqs. (1) and (2) gives

µN (t)− PN =
∞∫

−∞
K (t − u) (dM(u)− PM du) (3)

which describes how departures from the mean rate of the
output process N are related to fluctuations in the input pro-
cess about its mean rate. In order to determine K , Eq. (3) is
first multiplied by dM(v) − PM dv, and the expectation of
the resulting equation then taken with respect to realisations
of the processes M and N to obtain

QNM(v) =
∞∫

−∞
K (v − s) QMM(s)ds (4)

where QMM(s) is the matrix of second order cumulant den-
sities and cross-cumulant densities of M and QNM(s) is the
matrix of cross-cumulant densities between the processes N
and M. These densities are defined by

Cov{dM(t + v), dM(t)} = (PM δ(v)+ QMM(v)) dt dv,

Cov{dN (t + v), dM(t)} = QNM(v)dt dv,

where Cov denotes covariance and δ(t) is the Dirac delta
function. Equation (4) is a Fourier convolution from which
it follows directly that

A(λ) = F[K (u); λ]
= F[QNM(u); λ] (F[QMM(u); λ])−1 (5)

provided the inverse exists. In Eq. (5) λ is frequency,
F[S(u); λ] denotes the Fourier transform of S(u) and A(λ)
is the transfer function of the system specified in Eq. (1).

3.1 Error process

The question of how well the linear model captures the prop-
erties of the output process N can be described by intro-
ducing an error process. In the analysis of spike trains, this
error process is often formulated in terms of how well the

1 The matrix K may be viewed as the impulse response of the system.
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linear model predicts µN . The instantaneous error ε(t) is
defined by

ε(t)=(µN (t)− PN )−
∞∫

−∞
K (t − v) (dM(v)− PM dv) .

(6)

The error process measures the extent to which Eq. (3) is not
satisfied, and is assumed to be a stationary process satisfying
a mixing condition, i.e. events well separated in time behave
approximately independently. When expressed in terms of
the error process, the linear model can be restated as

µN (t) =
⎡
⎣PN − PM

∞∫

−∞
K (v)dv

⎤
⎦

+
∞∫

−∞
K (t − v) dM(v)+ ε(t) . (7)

Suppose that the data available for analysis are the pair of
vectors (M(t), N (t)) where t ∈ (0, T ]. The finite Fourier
transform applied to the model equation (7) gives

dµ(λ, T ) = 2

⎡
⎣PN − PM

∞∫

−∞
K (v)dv

⎤
⎦ sin(λT/2)e−iλT/2

+
T∫

0

e−iλt

⎡
⎣
∞∫

−∞
K (t − v) dM(v)

⎤
⎦ dt

+ d ε(λ, T ) (8)

where dµ(λ, T ) is the finite Fourier transform of µN (t) and
d ε(λ, T ) is the finite Fourier transform of the error process
ε(t) at frequency λ. Specifically,

dµ(λ, T ) =
T∫

0

e−iλtµN (t)dt while

dN (λ, T ) =
T∫

0

e−iλt dN (t) .

In the computations one chooses λ = λn = 2πn/T where
n = 1, 2, . . . , T − 1 which results in the elimination of the
first term on the right-hand side of Eq. (8) to obtain

dN (λn, T ) =
T∫

0

e−iλn t

⎡
⎣
∞∫

−∞
K (t − v)dM(v)

⎤
⎦ dt

+ dε(λn, T ) . (9)

Changing the order of integration in the integral on the right
hand side of this equation gives

dN (λn, T ) =
∞∫

−∞
e−iλnvK (v)

⎡
⎣

T−v∫

−v
e−iλnu dM(u)

⎤
⎦ dv

+ dε(λn, T ) . (10)

Since M is assumed to be a stationary process, and e−iλnu

has period T in u, then for large T

T−v∫

−v
e−iλnu dM(u) ≈

T∫

0

e−iλnu dM(u) = dM(λn, T )

where the approximation arises as a consequence of the prop-
erties of K (u), the mixing properties and sampling variability
of the process M over the interval of duration T . With this
approximation in place, Eq. (10) becomes

dN (λn, T ) ≈ A(λ) dM(λn, T )+ dε(λn, T ),

(for λn near λ), (11)

where A(λ), assumed continuous at λ, is the Fourier trans-
form of K (u). To facilitate the development of subsequent
analysis, it is convenient to introduce the notation ξ(λ) =
dN (λ, T ), η(λ) = dM(λ, T ) and e(λ) = dε(λ, T ) so that
Eq. (11) has the simplified representation

ξ(λn) ≈ A(λ) η(λn)+ e(λn), (for λn near λ). (12)

If Z(t) is a stationary vector process satisfying a mixing
condition, then each Fourier coefficient dZ (λn, T ) behaves
asymptotically as an independently distributed complex-
normal deviate with mean value zero and covariance matrix
2πT fZ Z (λ) (Brillinger 1983). Consequently, the Fourier
coefficients d ε(λn, T ) of ε(t) behave asymptotically as inde-
pendently distributed complex-normal deviates2 with mean
value zero and covariance matrix 2πT fεε(λ). This property
of the error process suggests that Eq. (12) can be interpreted
as a standard linear model in which the expected value of
ξ(λ), estimated with respect to realisations of ξ(λ) formed
by partitioning observations into samples of duration T , is
approximated by A(λ)η(λ). It is to be noted that if the matrix
A(λ) is chosen to minimise the matrix

	(A)

= 1

2πT
E

[
( ξ(λ)− A(λ) η(λ)) ( ξ(λ)− A(λ)η(λ))H

]
,

(13)

2 A random variable is said to be a multivariate complex-normal deviate
if its components are complex valued and its probability density func-
tion is multivariate Gaussian with a Hermitian covariance of a particular
form (see Brillinger 1975b, page 89, equations (4.2.4) and (4.2.5), and
the references therein).

123



Biol Cybern

then A(λ) = E
[
ξ(λ)η(λ)H

]
E

[
η(λ)η(λ)H

]−1
. The value of

	(A) at its minimum is E
[
e(λ)e(λ)H

]
/2πT with e(λ) =

ξ(λ) − A(λ)η(λ) and for large T approximates the spectral
density matrix of the error process. Note also that because
Fourier coefficients are complex-valued functions of
frequency, the usual matrix operation of transposition,
namely η T in the case of a real-valued vector η(λ), must
be replaced by the Hermitian operation of taking the com-
plex conjugate of the transposed matrix, namely ηH in the
case of the complex-valued vector η(λ).

The spectral density matrices fNM(λ) and fMM(λ) are
defined by

fMM(λ) ≈ 1

2πT
E

[
η(λ) ηH(λ)

]
,

(14)
fNM(λ) ≈ 1

2πT
E

[
ξ(λ) ηH(λ)

]

for large T . The corresponding Fourier coefficients of the
error process and the associated spectral density matrix at
this minimum are, respectively,

e(λ) = ξ(λ)− A(λ) η(λ). (15)

Taking K in (6) to be the inverse Fourier transform of
fNM(λ) f −1

MM(λ) one obtains

fεε(λ) = fNN (λ)− fNM(λ) f −1
MM(λ) f H

NM(λ) . (16)

Moreover E [e(λ)η(λ)H] = 0 and the error process ε(t) and
input process M are uncorrelated at each frequency λ. The
right-hand side of Eq. (16) is the spectral density matrix of
the error process, that is, it is the component of the spec-
tral density matrix of the output process that cannot be pre-
dicted from the input process based on a linear model. For
this reason fεε(λ) is called the partial spectrum of N having
removed the effect of M in a linear time invariant manner
and is denoted by fNN |M. Further details may be found in
Brillinger (1975b) where tests of hypotheses are also given.
In practice the quantities in expression (16) are replaced by
their estimates so that

f̂εε(λn) = f̂NN (λn)− f̂NM(λn) f̂ −1
MM(λn) f̂ H

NM(λn) .

(17)

3.2 Coherency

In common practice the coherency between a single input
process M and a single output process N is defined by

RNM = fNM√
fNN
√

fMM
, (18)

and the spectrum of the error incurred in using the linear
model to predict the output process N from the input pro-
cess M is

fεε = fNN
(

1− |RNM|2
)

(19)

where |RNM|2 is the coherence between the processes M
and N . By construction, the coherence |RNM|2 takes a value
between zero and one where a coherence of zero means that
the linear model has no power to explain the output process
N from the input process M.

Given vector-valued point processes N and M, the
scalar coherency (18) in the single-input single-output case is
replaced by the coherency matrix RNM(λ) defined by

fNM(λ) = DN (λ)RNM(λ)DM(λ) , (20)

where DN and DM are the diagonal matrices formed from
the square roots of the diagonal entries of the respective spec-
tral density matrices fNN and fMM. The spectrum of the
error process corresponding to Eq. (19) in the single-input
single-output case is replaced by

fεε = DN
(

RNN − RNM R−1
MM Rηξ

)
D H

N (21)

in which RNN and RMM are Hermitian matrices and R−1
MM

is assumed to exist. A fundamental property of RNN and
RMM is that they have unique Choleski factorisations
RNN = LN L H

N and RMM = LM L H
M in which LN

and LM are lower triangular matrices with positive entries
in their main diagonals. With the appropriate substitutions
in expression (21), the spectral density matrix of the error
process becomes

fεε = (DN LN )
(

I − R RH
)
(DN LN )H , (22)

where R = L−1
N RNM(L−1

M)H. In the case of a single-input
single-output model, expression (19) is recovered from
expression (22). The matrix

(
I − R RH

)
in expression (22)

describes the fraction of the output spectrum that is not pre-
dicted from the linear model. By construction, R RH is a pos-
itive definite Hermitian matrix. Since by definition fεε is a
complex-valued spectral density matrix, then ZH fεεZ ≥ 0
for column vectors Z and so it follows directly from expres-
sion (22) that

Y HY ≥ Y H
(

R RH
)

Y (23)

where Y = DN LH
N Z . Consequently the eigenvalues of R RH

lie in the interval [0, 1]which in turn suggests that R may play
the role of a generalised coherency and that the eigenvalues
of R RH may be called coherences.

However, in order to call R a coherency it is necessary to
identify underlying processes, say X and Z , for which R is
the coherency. Consider the process with stationary finite
Fourier transform dX (λ) = L−1

N D−1
N ξ(λ) and dZ (λ) =

L−1
MD−1

M η(λ) which are constructed from linear combina-
tions of the Fourier coefficients ξ(λ) and η(λ) of the pro-
cesses N and M. It is direct to show that the spectral matrices
of X and Z are I which means that the corresponding fre-
quency components of X and of Z are uncorrelated random
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variables with unit variance. The cross-spectrum between X
and Z is RXZ = L−1

N RNM(L−1
M)H = R since the spectral

matrices of the processes X and Z are both identity matri-
ces. Thus R is a coherency matrix and the eigenvalues of
R RH are coherences. Such coherences are called canonical
coherences (Brillinger 1975b, Section 10.3). Specifically, if
R RH = I then the linear model predicts N from M with
no error, whereas if R RH = 0 then the linear model has no
power to predict N from M.

3.3 Spectral decomposition of the error process

For the purpose of investigating the behaviour of a network,
the spectral density matrix of the error process fεε can be
decomposed into a series of terms each of which expresses
a different contribution to the error process. These contribu-
tions can be thought of as representing how different
patterns of connectivity contribute to the error within the
network. This decomposition of the error process is obtained
by recognising that there is a unitary matrix U , i.e. a matrix
satisfying U HU = I , with the property that

R RH = U DψU H =
J∑

k=1

ψkUkU H
k ,

where J is the dimension of R RH, Dψ is the diagonal matrix
of the eigenvaluesψ1, . . . , ψJ of R RH and Uk is the kth col-
umn of U , the unitary matrix diagonalising R RH. This repre-
sentation of R RH allows the error process to be re-expressed
in the form

fεε = DN LN U
(
I − Dψ

)
U H LH

N DN . (24)

Let Ck be the kth column of DN LN U , then Ck = DN LN Uk

and expression (24) becomes

fεε =
J∑

k=1

(1− ψk)CkCH
k . (25)

An interpretation of expression (25) is obtained by observing
first that C = [C1 · · ·CJ ] satisfies

fNN = CCH =
J∑

k=1

CkCH
k . (26)

Equation (26) decomposes the spectrum of N into a sum
of spectral density matrices, and therefore expression (25)
can be interpreted as a weighted sum of the elements of this
decomposition in which each weighting factor is a coher-
ence. Of course, the structure of this decomposition and the
coherence will depend on the configuration of the system.
The application of expression (25) will be illustrated both
analytically and numerically by an analysis of the results of
an experiment in which data from two input point processes
and two output point processes are available.

3.4 Analytical example

The application of expression (25) to the case of two output
processes with either one input process or two input pro-
cesses will be treated analytically and used to illustrate how
the spectral density of the error process is decomposed. For
representational convenience, the dependence of all expres-
sions on λwill be suppressed and the input and output bivar-
iate processes will be expressed in terms of their component
processes by

M =
[A

B
]
, N =

[ C
D

]
. (27)

If only one input process, say A, is considered then it is
straightforward to show that

R RH

=
[

|RCA|2 RCA RAD|C(1− |RCA|2)1/2
RAC RDA|C(1− |RCA|2)1/2 |RDA|C |2(1− |RCA|2)

]
,

(28)

where RAB|C denotes the partial coherency of the processes
A and B conditioned on the process C and is defined in terms
of the ordinary coherencies RAB, RAC and RCB by the for-
mula

RAB|C = RAB − RAC RCB√
1− |RAC |2

√
1− |RCB|2

. (29)

Moreover, the matrix R RH has eigenvalues

ψ1 = 0, ψ2 = |RCA|2 + |RDA|C |2
(

1− |RCA|2
)

(30)

and corresponding eigenvectors

U1 = 1√
ψ2

[
RAD|C(1− |RCA|2)1/2

−RAC

]
,

(31)

U2 = 1√
ψ2

[
RCA

RDA|C(1− |RCA|2)1/2
]

where it is assumed that ψ2 �= 0. Expressions (28), (30) and
(31) make explicit how the interactions between the output
processes and a single input process contribute to the struc-
ture of the error process. To appreciate why this is the case,
expression (26) decomposes the output process into compo-
nents parts each of which is scaled by a coherence in Eq. (25)
to give the error spectrum. The scaling factor is an eigen-
value of R RH, which expression (30) shows will incorporate
coherences and products of coherences between the input and
output processes. If two input processes A and B are present,
then a more complicated calculation leads to the coherency
matrix
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R =

⎡
⎢⎢⎢⎣

RCA RCB|A
(
1− |RCA|2

)1/2

RDA|C
(
1− |RCA|2

)1/2 RDB|C
(
1− |RCB|2

)1/2 − RAB RDA|C
(
1− |RCA|2

)1/2

(
1− |RAB|2

)1/2

⎤
⎥⎥⎥⎦ . (32)

Since in our example the input processes A and B are
generated to be statistically independent, then RAB = 0 and
the coherency matrix R takes the simplified form

R =
[

RCA RCB
RDA|C

(
1− |RCA|2

)1/2
RDB|C

(
1− |RCB|2

)1/2

]

(33)

with associated coherence matrix

R RH =
[

R11 R12

R21 R22

]
,

R11= |RCA|2+|RBC |2,
R12 = RCA RAD|C

√
1−|RCA|2+RCB RBD|C

√
1−|RCB|2,

R21 = RAC RDA|C
√

1−|RCA|2+RBC RDB|C
√

1−|RCB|2,
R22 = |RDA|C |2

(
1−|RCA|2

)+|RDB|C |2
(
1−|RCB|2

)
.

(34)

In the case of two input processes and two output processes
expression (32) makes explicit how the input and output
processes interact without an assumption as to whether or
not the input processes are independent. Expression (34) is
the coherence matrix of input and output processes in the
special case in which the two input processes have coher-
ence zero. These interactions will be examined in detail in
Sect. 4.

3.5 Numerical example

An immediate difficulty in assessing the error in the behav-
iour of a model with multiple input processes and multiple
output processes (not present in problems involving a sin-
gle input process and single output process) is the question
of how to measure the size of matrices arising in the anal-
ysis of these systems. A standard procedure used in numer-
ical analysis is to measure the size of a matrix by means
of a norm, which in this article is chosen to be the magni-
tude of the eigenvalue of largest modulus (Hermitian norm).
Interestingly, the transfer function A(λ) = E

[
ξ(λ)η(λ)H

]
E

[
η(λ)η(λ)H

]−1
minimises the Hermitian norm of the

matrix 	(A) in expression (13).
If the linear model cannot predict features of the output

process given the input process, then the spectral density
matrix of the error process will be identical to that of the

output process. Thus the norm of the spectral density matrix
of the output process provides reference values against which
the adequacy of the linear model can be assessed. Figure 2
gives an example of the use of this approach in assessing
the suitability of the linear model to explain the relationship
between the input and output for the muscle spindle experi-
ment.

The upper and lower panels of Fig. 2 represent respec-
tively the analysis of the behaviour of the muscle spindle in
the absence and in the presence of imposed length changes.
In this figure the adequacy of the linear model is tested when
only one input process is taken into account (dotted line)
although both inputs are active, and when both input pro-
cesses are taken into account (dashed line) in the estimation
of the Hermitian norm of the error process. The upper left
hand panel of Fig. 2 suggests that the linear model is not
adequate at frequencies in excess of 20 Hz, but that it may
be adequate at frequencies below 20 Hz in the absence of an
imposed length change when both input processes are taken
into account (see upper right hand panel which expands the
lower left hand corner of the upper left hand panel). The
lower panels of Fig. 2 illustrate that the linear model is not
adequate at any frequency in the presence of a dynamic length
change.

The behaviour of the norm of the error process in Fig. 2
can be appreciated in terms of the behaviour of the eigen-
values illustrated in Fig. 3. Recall that one eigenvalue (ψ1)
is zero when examining the panels of the left hand col-
umn of Fig. 3. In the absence of an imposed length change,
Fig. 3 (upper panels) shows that when taking into account a
second input (upper right panel), at frequencies below 25 Hz
ψ1 becomes nonzero and the second eigenvalueψ2 increases
its value with a corresponding reduction in the size of the
error process (Fig. 2). On the other hand, in the presence of
an imposed length change (lower panels), ψ2 (larger eigen-
value) shows no appreciable change when the second input is
taken into account, although the presence of the second input
causesψ1 to become non-zero. Moreover, the presence of an
imposed length change when both input processes are taken
into account leads to an appreciable reduction in the value of
ψ2, leavingψ1 largely unaffected. It suggests, therefore, that
the norm of the error process is principally controlled by the
value of ψ2.

The previous discussion has focussed on the relationship
between the eigenvalues of the generalised coherence matrix
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Fig. 2 The Hermitian norm of
the estimated spectral density of
the output process (solid line) in
the absence (upper panels) and
presence (lower panels) of an
imposed dynamic length change.
In each panel dotted lines denote
the estimated Hermitian norm of
the error process when both γ
inputs are active but only the γ1
input is used in the estimation of
this norm, whereas dashed lines
denote the Hermitian norm of
the error process taking into
account both of the γ inputs in
estimating this norm. Right hand
panels are enlarged versions of
the bottom left hand corner of
the left hand panels. Note that
when the estimated Hermitian
norm of the error process does
not differ from that of the output
process then the linear model is
an inadequate representation of
the behaviour of the system

Fig. 3 When both γ inputs are
active and the muscle spindle is
held at a fixed length, the upper
panels compare the estimated
nonzero eigenvalue (ψ2) of
R RH taking account of the γ1
input alone (left panel) and the
eigenvalues ψ1 (dotted lines)
and ψ2 (solid lines) taking
account of both γ1 and γ2 inputs
(right panel). The lower panels
show the same eigenvalues for
the same combinations of inputs
but with imposed length
changes. Note that the
eigenvalues ψ1 and ψ2 control
the norm of the error process

and the behaviour of the norm of the error process. The
behaviour of the eigenvalues themselves can be appreciated
in terms of the coherence between the separate input and
output processes. Figure 4 (left column) illustrates how the
coherence between one input and the response of the second-

ary ending (upper left panel) is influenced by the presence
of the second input (middle left panel) and by the presence
of the second input and an imposed length change (lower
left panel). Although the presence of a second input and an
imposed length change reduces the coherence between the

123



Biol Cybern

Fig. 4 The left column shows
the estimated coherence
between the γ1 input and the II
output when the γ2 input is
absent (upper left), in the
presence of the γ2 input (middle
left) and in the presence of the
γ2 input with imposed length
changes (lower left). The right
column shows the coherence
between the γ1 input and the Ia
output in the absence of γ2
(upper right), in the presence of
γ2 input (middle right) and in
the presence of the γ2 input with
imposed length changes (lower
right). Solid lines in the insert
of each panel represent the
processes between which the
coherence is estimated, whereas
dotted lines indicate other
processes present and← l →
indicates the presence of an
imposed dynamic length
change. The horizontal dashed
line in each panel represents the
upper level of a marginal 95%
confidence interval based on the
hypothesis that both processes
are independent

single input and the response of the secondary ending, the
coherence between these two processes nevertheless remains
significant at frequencies below 20 Hz. The corresponding
panels on the right hand column of Fig. 4 indicate that the
coherence between the single input and the response of the
primary ending is reduced in the presence of the second input,
and is not significant in the presence of the second input and
imposed length changes.

4 A time domain approach

The time domain approach to understanding input–output
dependencies for multivariate spike train processes devel-
oped in this section involves an extension of the rate function
µN given in expression (1) by making use of the complete
intensity function defined by

µN (t |M(u),N (u), u ≤ t)

= 1

h
Prob {N spike in (t, t + h] |M(u),N (u), u ≤ t}

(35)

for h small. This function completely describes the stochastic
properties of many temporal point processes. A distinction
of this approach is that the motivating model is nonlinear
(Lindsay et al. 2001), and uses the spike generating
mechanism and recovery process described in Brillinger and
Segundo (1979) extended to the case of several point process
inputs. In this model the input process M and the membrane
potential U (t) resulting from this input are related through
the equation

U (t) =
b∫

0

a(u)dM(t − u) (36)

where a(u) is called a summation function, b is the duration
of the interval to the preceding output spike and M is the step
unit function corresponding to the times of input spikes. The
function a(u) in Eq. (36) plays the role of K (u) in Eq. (1),
and estimates of its Fourier transform might be compared
with estimates of A(λ) in Eq. (5). An output spike is gener-
ated from the model (36) whenever U (t) ≥ θ(t) = θ + ε(t)
where θ is a parameter of the model and ε(t) is a noise pro-
cess. Upon spike initiation, the function U (t) is reset to zero.
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In the computational work presented in this section, the
spike trains M(t) and N (t) are represented by the time series
Mt and Nt with Mt = 1 (Nt = 1) if a spike occurred in the
interval (t − 1, t] and zero otherwise. In addition, the func-
tions U (t) and θ(t) are replaced by Ut and θt respectively and
ε(t) by εt to highlight its discreteness, with t = ±1,±2, . . ..
The summation function a(u) will be approximated by au

with u = 1, 2, . . . so that expression (36) now takes the form

Ut =
b∑

u=0

au Mt−u . (37)

The values, εt , of the noise process values will be assumed
to be independent and identically distributed with distribu-
tion function P(e) = Prob{εt ≤ e}. The complete intensity
function is then approximated by

Prob {Nt = 1 |Ut } = Prob {Ut ≥ θ + εt } = P(Ut − θ) .
(38)

In the subsequent analyses εt will have a logistic distribu-
tion for ease of computations, although it could have been
assumed to be normally distributed. This model is referred to
as a Logit model. The principal statistical computer packages3

have functions for fitting this model with those functions
providing estimates of the parameters and their uncertain-
ties. These models are particular cases of the generalized
linear model (McCullagh and Nelder 1989). More generally,
P itself may be estimated if desired (Brillinger 1992).

When the data, (Mt , Nt ), t = 0, . . . , T − 1, of the cor-
responding input and output series are available, estimation
of the summation function a can proceed by maximizing the
likelihood

T−1∏
t=0

P(Ut − θ)Nt [1− P(Ut − θ)]1−Nt (39)

as a function of a0, . . . , ab. To obtain smoothed estimates of
the values of the function a(u) at u = 0, 1, . . . , b, regular-
ized maximum likelihood estimates are employed (Vapnik
1982). The procedure is to add a penalty term, R, and regu-
larization parameter, γ , to the log of the likelihood function
(39) to give the penalized likelihood function
∑

t

{Nt log P(Ut − θ)+ (1− Nt ) log[1− P(Ut − θ)]}

−γ R(a0, a1, . . . , ab) . (40)

Expression (40) is now maximized for given R and positive γ
where the role of γ is to modify the relative importance of the
penalty terms in the likelihood (40). The analyses presented

3 The package R was used in the computational work of this section
(CRAN 2008).

were based on the penalty function

R =
b−1∑
u=0

(au+1 − au)
2 .

The sandwich estimator was used to provide consistent
estimates of the covariance matrix of the parameter estimates
(Hilbe and Hardin 2001).

The following examples will illustrate the development
of a sequence of models of increasing complexity progress-
ing from single-input single-output models to multiple-input
multiple-output models in which a and M in expression (37)
will be taken to be vectors and R will be the sum of the
corresponding individual sum of the squared-differences of
sequential terms.

4.1 Single and multiple input with single-output at a fixed
muscle length

The first example illustrates, through the behaviour of the
kernel functions, how the fusimotor inputs (γ1, γ2) applied
separately to the muscle spindle affect the responses of its
secondary (II) and primary endings (Ia), and how these effects
are altered when both inputs act simultaneously with the
parent muscle held at a fixed length. The models used in
the analysis of the single-input single-output experiment
are

Prob{IIt = 1|γ1} = L

(
b∑

u=0

auγ1,t−u

)
,

Prob {IIt = 1|γ2} = L

(
b∑

u=0

auγ2,t−u

)
,

(41)

Prob {Iat = 1|γ1} = L

(
b∑

u=0

auγ1,t−u

)
,

Prob {Iat = 1|γ2} = L

(
b∑

u=0

auγ2,t−u

)
,

where L denotes the distribution function of the logistic
distribution and the value of b is taken to be 50. The models
used in the analysis of the two-input single-output experi-
ment are

Prob {IIt=1|γ1, γ2} = L

(
b∑

u=0

a1,uγ1,t−u +
b∑

u=0

a2,uγ2,t−u

)
,

Prob {Iat=1|γ1, γ2} = L

(
b∑

u=0

a1,uγ1,t−u +
b∑

u=0

a2,uγ2,t−u

)
.

(42)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Penalized maximum likelihood estimates of a(u), the kernel
functions (solid lines) for the models in Eqs. (41) and (42), together
with twice their marginal standard error limits (dashed lines). a is the
kernel function for the II response to γ1, b is the kernel function for
the II response to γ2, c, d are the kernel functions aγ1 and aγ2 for the

II response to γ1 and γ2. e is the kernel function for the Ia response to
γ1, f is the kernel function for the Ia response to γ2, g, h are the kernel
functions aγ1 and aγ2 for the Ia response to γ1 and γ2. The horizontal
scale gives lag u in milliseconds

The kernel functions estimated from these models using a
penalized log-likelihood procedure are illustrated in Fig. 5.
It is clear from Fig. 5 (upper panels) that of the two fusimotor
axons here, only γ1 exerts an influence on the spindle sec-
ondary ending independently of whether or not both fusi-
motor axons act separately or together. On the other hand
Fig. 5 (lower panels) illustrates that both fusimotor axons
influence the primary ending. By contrast with the fusimotor
effects on the secondary ending, a comparison of Fig. 5e
with Fig. 5g and Fig. 5f with Fig. 5h indicates that when
both inputs act simultaneously their individual influences are
marginally reduced. It is also clear from Figure 5 that the γ2

fusimotor axon affects only the primary ending whereas the
γ1 fusimotor axon influences both primary and secondary
endings although its influence on the former is more pro-
nounced. Furthermore, Fig. 2 (upper right panel) suggests
that the effect of the linear model is improved when the action
of both fusimotor axons are taken into account, and therefore
it is anticipated that the kernel functions illustrated in Fig. 5c,
d, g and h provide more realistic representations of the effec-
tiveness of fusimotor activity than those when each axon is
stimulated independently since the former approaches the
normal behaviour of the spindle.

4.2 Single and multiple input with single-output
and random changes in muscle length

The next example illustrates, through the behaviour of
the kernel functions, how the fusimotor inputs (γ1, γ2)
applied simultaneously to the muscle spindle affect the
responses of its secondary (II) and primary endings (Ia),
and how these effects are altered in the presence of ran-
domly varying length changes applied to the parent mus-
cle. The object of this Section is to illustrate the sensitivity
of the kernel functions with respect to random variations in
the length of the parent muscle for the models defined by
Eqs. (42).

Figure 6 illustrates clearly the sensitivity of kernel func-
tions to imposed length changes. A comparison of Fig. 6a, b
with Fig. 6e, f indicates that the kernel functions aγ1 and
aγ2 , which characterise the response of the secondary end-
ing to simultaneous fusimotor inputs, are largely unaltered
by the presence of random variations in the length of the
parent muscle. On the other hand the kernel function aγ1

which characterises the response of the primary ending (com-
pare Fig. 6c and g) is no longer significant in the presence
of random length changes, suggesting that the γ1 fusimotor
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Penalized maximum likelihood estimates of a(u), the kernel
functions (solid lines) for the models in Eqs. (41) and (42), together with
twice their marginal standard error limits (dashed lines) at a fixed mus-
cle length in a–d and in the presence of random variations in the length
of the parent muscle about this fixed length in e–h. Kernel functions
for Ia and II responses are estimated when both fusimotor axons are
stimulated. a and e show, respectively, the kernel function aγ1 for the II
response at fixed length and for random length changes; b and f show,

respectively, the kernel function aγ2 for the II response at fixed length
and for random length changes; c and g show, respectively, the kernel
function aγ1 for the Ia response at fixed length and for random length
changes; d and h show, respectively, the kernel function aγ2 for the Ia
response at fixed length and for random length changes. The horizontal
scale gives lag u in milliseconds. In this figure, a and b are taken from
Fig. 5c and d, and c and d are taken from Fig. 5g and h

axon influences only the secondary ending in the presence
of random length changes. Furthermore, the kernel function
aγ2 which characterises the response of the primary ending
(compare Fig. 6d and h), although reduced considerably in
magnitude in the presence of random length changes, never-
theless remains significant for a range of lags. In conclusion,
randomly imposed length changes appear to uncouple the
action of the γ1 fusimotor axon on the response of the pri-
mary ending, whereas the same random length changes leave
unchanged its effect on the response of the secondary end-
ing. Therefore under dynamically imposed length changes,
the response of the primary and secondary endings from
the same muscle spindle at this level of analysis may pro-
vide two different kinds of information. The activity of the
primary ending reflects the influence of fusimotor activity
with the parent muscle held at a fixed length, but during
dynamic length changes predominantly reflects the effect of
these changes. On the other hand the response of the second-
ary ending reflects only the fusimotor activity and the fixed
length about which these dynamic length changes have been
imposed.

4.3 Fusimotor and length-dependent interactions
between responses of primary and secondary
muscle spindle endings

As in the previous Sections, changes in the behaviour of the
kernel functions are used as an index of changes in the rela-
tionship between spike train discharges. In this Section, the
changes in the kernel functions are used to examine how
mutual interactions between the activity of Ia and II endings
are influenced by fusimotor (γ1, γ2) inputs when the par-
ent muscle is held at fixed length and also when randomly
varying length changes are applied to the parent muscle. The
model used to investigate the mutual interactions between the
activity of the primary and secondary muscle spindle endings
in the absence of both length changes and fusimotor input is

Prob {IIt = 1|Ia} = L

(
b∑

u=0

auIat−u

)
,

(43)

Prob {Iat = 1|II} = L

(
b∑

u=0

auIIt−u

)
.
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(a) (b)

Fig. 7 Penalized maximum likelihood estimates of a(u), the kernel
functions (solid lines) for the models in Eqs. (43), together with twice
their marginal standard error limits (dashed lines) at a fixed muscle
length. The left panel shows the kernel functions for the II response
when estimated from Ia activity, and the right panel shows the ker-
nel functions for the Ia response when estimated from II activity. The
horizontal scale gives lag u in milliseconds

The kernel functions describing these interactions are illus-
trated in Fig. 7.

From Fig. 7 it is clear that there is negligible interaction
between the activity of the primary and secondary endings
in the absence of fusimotor activity and changes in muscle
length. In a previous study Rosenberg et al. (1989, see Fig. 6)
have demonstrated that the activity of the primary and sec-
ondary endings become correlated in the presence of either
fusimotor activity or random changes in muscle length. In the
former the correlation occurs at frequencies below 20 Hz,
whereas in the latter the correlation occurs at frequencies
between 20 and 60 Hz.

Equations (43) are now adapted to take account of the
influence of fusimotor input and imposed random length
changes to obtain the extended model

Prob {IIt = 1|γ1, γ2, Ia}

= L

(
b∑

u=0

a1,uγ1,t−u +
b∑

u=0

a2,uγ2,t−u+
b∑

u=0

aIa,uIat−u

)
,

(44)

Prob {Iat = 1|γ1, γ2, II}

= L

(
b∑

u=0

a1,uγ1,t−u +
b∑

u=0

a2,uγ2,t−u+
b∑

u=0

aII,uIIt−u

)
.

(45)

The interactions characterised by each model equation are
explored separately to assess whether or not there is a direc-
tional component to the interaction between the discharges
of primary and secondary endings.

Figure 8 illustrates the influence of Ia, γ1, γ2 activity on
the response of the secondary ending. The upper row of this
Figure demonstrates that the dominant factor correlating II
with Ia is the γ1 activity (Fig. 8a), although there may be a
small contribution from Ia activity (Fig. 8c). In the presence
of a randomly varying length change the influence of γ1 activ-
ity on II remains largely unchanged (Fig. 8d), whereas that
of Ia activity on II is enhanced (Fig. 8f). The analysis contin-
ues by considering how the response of the primary ending

Fig. 8 Penalized maximum
likelihood estimates of a(u), the
kernel functions (solid lines) for
the model in Eq. (44), together
with twice their marginal
standard error limits (dashed
lines) at a fixed muscle length in
a–c and in the presence of
random variations in the length
of the parent muscle about this
fixed length in d–f. Kernel
functions for the II response are
estimated when both fusimotor
axons are stimulated and the Ia
activity is taken into account.
a and d show, respectively, the
kernel function aγ1 for the II
response at fixed length and for
random length changes; b and e
show, respectively, the kernel
function aγ2 for the II response
at fixed length and for random
length changes; c and f show,
respectively, the kernel function
aIa for the II response at fixed
length and for random length
changes. The horizontal scale
gives lag u in milliseconds

(a) (b) (c)

(d) (e) (f)
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Penalized maximum likelihood estimates of a(u), the kernel
functions (solid lines) for the model in Eq. (45), together with twice
their marginal standard error limits (dashed lines) at a fixed muscle
length in a–c and in the presence of random variations in the length of
the parent muscle about this fixed length in d–f. Kernel functions for
the Ia response are estimated when both fusimotor axons are stimulated
and the II activity is taken into account. a and d show, respectively, the

kernel function aγ1 for the Ia response at fixed length and for random
length changes; b and e show, respectively, the kernel function aγ2 for
the Ia response at fixed length and for random length changes; c and f
show, respectively, the kernel function aII for the Ia response at fixed
length and for random length changes. The horizontal scale gives lag u
in milliseconds

depends of the properties of the activity of the processes II,
γ1 and γ2. These results are illustrated in Fig. 9.

By contrast with the interaction from Ia onto II, where the
predominant influence is due to the activity of the γ1 fusi-
motor axon with a small influence from Ia activity, for the
interaction in the direction from II onto Ia in the absence of
random length changes, the activity of both γ1 and γ2 fusimo-
tor axons contribute to the correlation between the responses
of the primary and secondary endings (Fig. 9a, b), with no
contribution arising from the activity of the secondary end-
ing (Fig. 9c). On the other hand, in the presence of a random
length change, the contribution from γ1 to Ia is suppressed,
the contribution from γ2 to Ia is greatly reduced and the con-
tribution for II to Ia appears to be unchanged.

The interaction between the Ia and II processes will be
interpreted using the model equations (44) and (45). In each
of these models the argument of the link function L con-
tains three components. Each argument includes contribu-
tions from the activities of γ1 and γ2 with the argument
in model (44) including a contribution from Ia activity and
the argument of model (45) including a contribution from II
activity. Consider the Ia spike train with an identical line of
reasoning for the II spike train. The Ia spike train may be
interpreted as resulting from the combined effect of the γ1

activity, the γ2 activity and the activity of unknown processes

resulting from the behaviour of the length of the parent
muscle. Since the activity of the γ1 and γ2 processes are
included in the argument of the link function as separate
components, the role of the II spike train in this argument
can be thought of as a proxy for the contribution of these
unknown processes.

With the Ia and II processes interpreted as proxies
for unknown processes, the question now becomes one of
whether or not there is a preferred direction of interaction
between these processes contingent on the linear models cho-
sen. Consider first the case of the parent muscle held at a fixed
length. In models (44) and (45), the unknown processes rep-
resented by their respective kernel functions (Figs. 8c and 9c)
make negligible contributions to the argument of their respec-
tive link functions and so to the probability of the occurrence
of a Ia or II spike. On the other hand, the γ1 activity makes
a significant contribution to both link functions and there-
fore to the probability of the occurrence of a Ia or II spike
(Figs. 8a and 9a). Finally, γ2 activity contributes only to the
link function of model (45) and thus to the probability of the
occurrence of a Ia spike (Figs. 8b and 9b).

In the presence of dynamically imposed length changes,
the relative contributions of each component of the argument
of the link function are altered. First, the activity of γ1 con-
tributes only to the argument of the link function in model
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(44) (Figs. 8d and 9d), whereas previously in the case of a
fixed length the activity of γ1 contributed to the argument
of both link functions (Figs. 8a and 9a). Second, the con-
tribution of the activity of γ2 to the argument of the link
function in model (44) remains unchanged in the presence
of dynamically imposed length changes (Fig. 8b, e), whereas
its contribution to the argument of the link function in model
(45) is greatly reduced (Fig. 9b, e). Finally, the most dramatic
change in the argument of the link functions occurs in the con-
tributions made by the unknown processes represented by Ia
activity in the link function of model (44). In particular note
the striking difference that the unknown processes associated
with the Ia activity have on the II response in the absence and
in the presence of a dynamic length changed imposed on the
parent muscle (compare Fig. 8c with Fig. 8f). Therefore in the
presence of dynamically imposed length changes, the lower
panels of Figs. 8 and 9 demonstrate that the unknown pro-
cesses associated with Ia activity exert a stronger influence
on the probability of the occurrence of a II spike than the
unknown processes associated with II activity have on the
probability of occurrence of a Ia spike. These results seem
to suggest that under dynamic length changes the activity of
the Ia and II processes carry different information about the
effects of the inputs imposed on the muscle spindle.

5 Concluding remarks

A frequency domain approach and a time domain approach
have been combined in an investigation of the behaviour of
the primary and secondary endings of an isolated muscle
spindle in response to the activity of two static fusimotor
axons when the parent muscle is held at a fixed length and
when it is subjected to random length changes.

The frequency domain analysis is based on a stationary
input with the assumption referring only to the first and sec-
ond order moments of the processes, and has been used to
examine the properties of the muscle spindle by providing a
measure of the error process associated with the linear model,
and to specify how the interactions between the recorded
processes contribute to this process. On the other hand the
time domain approach involves a full probability model in
which the inputs can be general processes which need not
be stationary processes—a very important feature of this
approach since in many experimental situations the input
processes are not stationary. The construction of the time
domain model allows new input processes to be included
directly to the model in arbitrary combinations with exist-
ing input processes. A number of mathematical models of
the muscle spindle have been developed (Mileusnic et al.
2006). One application of the procedures developed in this
article would be to apply them to assess the linear behav-
iour of these models using the frequency domain approach

outlined in Sects. 3 and 3.2, and to examine the behaviour of
the kernels derived from the time domain methods presented
in Sect. 4.

The main feature of the time domain results is that they
illustrate how the addition of further processes to the input
interact with the effects of existing inputs. This property of
the time domain approach was used to identify a preferred
direction of interaction between the processes underlying the
generation of the activity of the primary and secondary end-
ings. By contrast, the frequency domain approach showed
that the linear range of the model is extended when both input
processes are present. By associating an error process with
the linear model, it was shown that this model is reasonable at
frequencies below 25 Hz in the absence of an imposed length
change. The range of frequencies for which the model is ade-
quate lie within the physiological range of naturally occurring
frequencies at fixed lengths. On the other hand, in the pres-
ence of dynamic variations in the length of the parent muscle,
the linear model did not give a satisfactory description of the
behaviour of the input and output processes. However, this
description may be improved by taking account of nonlinear
behaviour in the manner proposed by Moore and Auriemma
(1985). The results presented in this work emphasise that the
analysis of the behaviour of complex systems benefits from
a combination of frequency and time domain methods.
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