160 research outputs found

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    Chronic Stress, Sense of Belonging, and Depression Among Survivors of Traumatic Brain Injury

    Full text link
    To test whether chronic stress, interpersonal relatedness, and cognitive burden could explain depression after traumatic brain injury (TBI). Design : A nonprobability sample of 75 mild-to-moderately injured TBI survivors and their significant others, were recruited from five TBI day-rehabilitation programs. All participants were within 2 years of the date of injury and were living in the community. Methods : During face-to-face interviews, demographic information, and estimates of brain injury severity were obtained and participants completed a cognitive battery of tests of directed attention and short-term memory, responses to the Perceived Stress Scale, Interpersonal Relatedness Inventory, Sense of Belonging Instrument, Neurobehavioral Functioning Inventory, and Center for Epidemiological Studies Depression Scale;. Findings : Chronic stress was significantly and positively related to post-TBI depression. Depression and postinjury sense of belonging were negatively related. Social support and results from the cognitive battery did not explain depression. Conclusions : Postinjury chronic stress and sense of belonging were strong predictors of post-injury depression and are variables amenable to interventions by nurses in community health, neurological centers, or rehabilitation clinics. Future studies are needed to examine how these variables change over time during the recovery process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72593/1/j.1547-5069.2002.00221.x.pd

    A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) has few therapeutic options, and alternative approaches are urgently needed. Stimulator of IFN genes (STING) is becoming an exciting target for therapeutic adjuvants. However, STING resides inside the cell, and the intracellular delivery of CDNs, such as cGAMP, is required for the optimal activation of STING. We show that liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively than soluble cGAMP. These particles induce innate and adaptive host immune responses to preexisting tumors in both orthotopic and genetically engineered models of basal-like TNBC. cGAMP-NPs also reduce melanoma tumor load, with limited responsivity to anti-PD-L1. Within the tumor microenvironment, cGAMP-NPs direct both mouse and human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1-like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; increase IFN-γ-producing T cells; augment tumor apoptosis; and increase CD4+ and CD8+ T cell infiltration. Activated T cells are required for tumor suppression, as their depletion reduces antitumor activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single dose is sufficient to inhibit TNBC. These data suggest that a minimal system comprised of cGAMP-NP alone is sufficient to modulate the tumor microenvironment to effectively control PD-L1-insensitive TNBC

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    Psychological placebo and nocebo effects on pain rely on expectation and previous experience

    Get PDF
    AbstractExpectation and previous experience are both well established key mediators of placebo and nocebo effects. However, the investigation of their respective contribution to placebo and nocebo responses is rather difficult because most placebo and nocebo manipulations are contaminated by pre-existing treatment expectancies resulting from a learning history of previous medical interventions. To circumvent any resemblance to classical treatments, a purely psychological placebo-nocebo manipulation was established, namely, the “visual stripe pattern–induced modulation of pain.” To this end, experience and expectation regarding the effects of different visual cues (stripe patterns) on pain were varied across 3 different groups, with either only placebo instruction (expectation), placebo conditioning (experience), or both (expectation + experience) applied. Only the combined manipulation (expectation + experience) revealed significant behavioral and physiological placebo–nocebo effects on pain. Two subsequent experiments, which, in addition to placebo and nocebo cues, included a neutral control condition further showed that especially nocebo responses were more easily induced by this psychological placebo and nocebo manipulation. The results emphasize the great effect of psychological processes on placebo and nocebo effects. Particularly, nocebo effects should be addressed more thoroughly and carefully considered in clinical practice to prevent the accidental induction of side effects.PerspectiveEven purely psychological interventions that lack any resemblance to classical pain treatments might alter subjective and physiological pain correlates. A manipulation of treatment expectation and actual treatment experience were mandatory to elicit this effect. Nocebo effects were especially induced, which indicated the necessity for prevention of accidental side effects besides exploitation of placebo responses

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
    corecore