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Particle Swarm Optimization for the Steiner Tree in Graph
and Delay-Constrained Multicast Routing Problems

Rong QU Ying Xu - Juan P. CastroDario Landa-Silva

Abstract This paper presents the first investigation on applgiRgrticle Swarm Optimization (PSO) algorithm to
both the Steiner tree problem and the delay constrained multicast routitgnpr&beiner tree problems, being the
underlining models of many applications, have received significant ohsatention within the meta-heuristics
community. The literature on the application of meta-heuristics to multicast rquiibéems is less extensive but
includes several promising approaches. Many interesting research issuesmstilt te be investigated, for
example, the inclusion of different constraints, such as delay bpuién finding multicast trees with minimum
cost. In this paper, we develop a novel JPSO algorithm based on thmguRSO (JPSO) algorithm recently
developed by Moreno-Perez et al. (2007), and also propose two nodekdacah heuristics within our PSO
framework. A path replacement operator has been used in particle mduwgzrawe the positions of the particle
with regard to the structure of the tree. We test the performanoarao]PSO algorithm, and the effect of the
integrated local search heuristics by an extensive set of experimentdtarashrouting benchmark problems and
Steiner tree problems from the OR library. The experimental results seauplrior performance of the proposed
JPSO algorithm over a number of other stHtéhe-art approaches.

Keywords delay constrained multicast routin@teiner tree problemsparticle swarm optimization

1. Introduction

Multimedia applications such as video/audio conferencing and distance education demacastmulti
communications, where data streams are sent from the source node to a set dibdsshitthin the
same multicast group in computer networks. The objective is to maximizethieast throughput
within limited and constrained resources. The quality of service (QoS) eewgiits in the underlying
computer network take into account several attributes such as cost, delayadielign, packet losses
and hop count. Due to the rapid increase in the demand of multimedia services, as wetha
challenges related to the implementation of effective multicast communicatimricast routing
problems have recently attracted an increasing attention from the metait®etgstarch community in
both computer communications and operational research.

The underlying model for multicast routing problems and a number of other psoisi¢he Steiner
tree problem (Hwang and Richards, 1992), a well known NP-hard combinatorial agitmiproblem
(Garey and Johnson, 1979). This problem has been widely studied for decades, and stil pigrseat
research challenge. When solving real life multicast routing problems, moreagussheed to be
considered in addition to the problem of finding a Steiner tree. The two most commanpamtant
QoS requirements when constructing multicast trees are the delay and the cost. iDhendndklay is
the sum of the total delays long the paths from the source to each destinatiaal Itime
communications, this delay should be within a certain delay bound. The cost of thegitrkieas the
sum of the cost of all lirkin the tree. A general form of the cost occurs from using and/or reserving
network resources, such as the bandwidth, when sending data streams via the nekso®ther
specific costs can also be defined depending on the network being used in the problem.

In multicast routing problems, finding the multicast tree with theimmal cost while satisfying the
delay bound constraint is equivalent to the problem of finding a delay-constraiieel 8tee, thus the
former is also a NP-hard problem. The nature of the problem and the variety hicdmshat exist in
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real life applications have motivated an increasing interest from the dcieotifimunityto developing
various optimization and search algorithms, including meta-heuristics, foptbblem (Oliveira and
Pardalos, 2005).

In this paper, we investigate the Particle Swarm Optimization (PSO) htgofiKennedy and
Eberhart, 1995) for solving the Delay-Constrained Least-Cost (DCLC) multmatitg problem and
also the underlying Steiner tree problem. Based on the Jumping PSO (JPSOy emezitped by
Moreno-Perez et al. (2007), operations which take into account the structure and tdahedsce are
carried out on selected paths within particle moves to reduce the thettofe. Two novel local search
algorithms have been hybridized to intensify the search to neighboring solutiotise HBest of our
knowledge, no previous investigation has been carried out on using PSO (or othbeuistics) to
tackle both problems. Most related papers in the literature have mainly focused aftloera. On the
DCLC multicast routing problem, we compare our JPSO algorithm against the best fesuin
reported in the literature. On the Steiner tree problem, we assessidten@ffand effectiveness of our
JPSO algorithm by calculating the exact gap to the global optimal solutions Knowhe benchmark
datasets used. A large amount of experiments and simulations demonstrate that oaigdH®Bmh
obtains the best quality solutions for the DCLC multicast routing problemshightlyy competitive
results for the Steiner tree benchmark problems considered in this work.

The rest of the paper is organized as follows. We first present the netwdel and formulations
for DCLC multicast routing problems and Steiner tree problems in Sectiosla2e® literature on both
problems is also reviewed. The JPSO algorithm and our proposed JPSO algorithm atedoiesen
Sections 3 and 4, and then evaluated through extensive experimentations in Section 5. Finafy6 Sect
concludes the paper and proposes potential future work.

2. Problem Definitions and Related Work

2.1The Delay-Constrained Least Cost (DCLC) Multicast Routing Problem

The DCLC multicast routing problem can be defined by using a directed graptV,Gc}; (hereV is a

set of nodes ané& is a set of links, respectively. The nodes in V include a source node s, a set of
destination nodes c V — {s} which receive data streams from the source, and a set of relay nodes which
are intermediate hops on the paths from the source s to the destinationssit ®hpaths linking the
source to the destination nodes are also called multicast groups. The numistinafide nodes | R | is

also called the group size.

Within the multicast network, each link e = (€ E from node ito node j is associated with a link
cost C(e): I R" and a link delay D(e): — R’, where R are nonnegative real numbers. In the general
case, computer networks are asymmetric, i.e. the links in G are bidirectional, and iibie poas C(e)}
C(e’) and D(e)}~ D(e"), with e = (i j€ E ande’ = (j, i) €E, i, j€ V. A path P(u, v) from node i node
v can be defined as an ordered set of links, B@®,{¢u, i), (i, j), ..., (k, V}.

A multicast tree T(s, R) is a tree rooted at the source s, spannggsatations; € R. We denote
P+(r))c T as the path from the source s to a destinat € Rrin the multicast tree T. The delay of the
path from g0 a destination;y denoted by Delayf; can then be defined as the sum of the delays on all
links along the paths-f;):

Delay(r) = ) D(e) (1)

&R (1)

The delay of the overall multicast tree T(s, R), denoted by Delay(ffe is)aximum delay among all
the paths Hry), € R:

Delay(T)= max{Delay(r) |V r, € R} (2)



The total cost of the multicast tree, denoted by Cost(T), is the sum of the costs of all links on the paths
in the multicast tree:

Cost(T) => C(e) @)

In real time computer network applications, different delay boufxdsay exist for paths to
different destinations; € R. In DCLC multicast routing problems, the delay bound defines the upper
bound to the sum of delays on all links along the path from the source s to sttdtide (€ R. In this
paper and the other related work reviewed in Section 2.4, it is assumed that thte pHttsstinations
have the same upper bouddnoted by A = dy;, I € R.

Given the above definitions, the Delay-Constrained Least Cost (DCLC) multedistgr problem
can be formally defined as follows (Guo and Matta, 2000)

The Delay-Constrained Least Cost (DCLC) Multicast Routing Problem: Given a network G, a
source node s, a set of destination nog€ R; a link delay function D(:), a link cost function
C("), and a delay bound A, the DCLC multicast routing problem is to construct a multicast tree
T(s, R) such that the delay bound of the path is satisfied and the tree cost Gasi(iinized.
We can define the objective function of the DCLC multicast routing problem as follows:

Minimize {Cost(T) |T € T(s, R)} s.t. Delay() <A, Vr, eR (4)

2.2The Steiner Tree Problem

The Steiner tree problem is the underlying model of the DCLC multicashgoutoblem and is defined
by an undirected graph G = (V, E), whéfés a set of nodes arielis a set of links, respectively. Each
link e(i, j) € E linking node i and node j is associated with a weight W(+— E'. The triangle
inequality holds in Euclidean metric spaces, therefore)eMe) > Wi, k), e = (i, ) €E, & = (],
K)€ E, Vi, j, k e V. Nodes in V can be partitioned into a set of required destinatioesiv@nd the
remaining nodes S, ¥ Ru S. Then, the metric Steiner tree problem can be defined as follows:

The Steiner Tree Problem is to find a minimum weighted tree T in GCE, that spans all
nodes in R and if necessary some additional nodes (the so called Steiner n&ddgjeiriotal
weight W(T) of the tree is the sum of the weights of all links in the tree TWi(€) = ZW(e)

eT

A collection of well known Steiner tree problems have been maintained in the @R ldt
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html, originally miidd in Beasley (1990).
During the yearsthesebenchmark problems have been tested in the OR community by various meta-
heuristics and exact methods. Branch and cut methods with pre-processing, reductigmescimi
primal heuristics have been used to solve these instances to optimality (Koch din¢g 2888). Such
techniques have also been widely studied on other variants of the Steineohieenpr(Barahona and
Ladanyi, 2006; Costa, Cordeau and Laporte, 2006).

The Steiner tree problem and its variants have also been widedg bysPSO algorithms in the
literature Consoli et al. (2010) present a JPSO for the minimum labeling Stesegoroblem, where the
objective is to find a spanning tree with the smallest number of distireslah links, covering a given
subset of nodes. The algorithm outperforms an exact method, a pilot method andssamapproach
with and without local search, finding high quality solutions with short runtimgs. Apart from the
JPSO by Consoli et al. (2010), the only other discrete PSO algoritmmviiich explores in discrete
search space for solving combinatorial optimization problems) applied to the Steinaobtksens that
we are aware of is developed by Zhong et al. (2008). A complete graph isdiesited by using the
Floyd's algorithm (Floyd, 1962). A modified Prim’s algorithm is used to re-create the minimal spanning
tree, and a trimming operation is used to cut off redundant nodes. The algorithmempirto a
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genetic algorithm@GA) on both the B and C datasets in the OR library. We compare our JRSithalg
with Zhong et al. (2008) on the same datasets in Section 5. Other search algdetietoped for the
Steiner tree problem can be found in the review in Zachariasen (1999).

To our knowledge, there is no efficient exact method in the literature to solve @yebdehded
multicast routing problem. Existing related work is only limited to hearisthd meta-heuristic
approaches. Our aim here is to demonstrate that the proposed JPSO can not only b appleethe
delay-constrained least cost multicast routing problems, but also outperfortirgaxista-heuristics on
solving some of the widely tested benchmark Steiner tree problems. Expefiregaltuations and
comparisondo existing results on both of the benchmark problems in the literature providéfigcie
justification of the JPSO algorithms proposed in our work.

2.3 Particle Swarm Optimization for Different Multicast Routing Problems

A number of PSO algorithms have been developed in the literature for solvamgg@ of multicast
routing problems with different constraints and featuressd@iméeresting multicast routing problems are
very different from the DCLC multicast routing problems considered in this,&odkwill be the subject
of our future work.

Yuan et al. (2004) formulate the energy-aware multicast routing problem in wisldssc
networks using an integer linear programming model, and apply a multi-phasstediB&0 to find
optimal solutions. Total transmission power is minimized with connection and broadoastints. A
symbiosis mechanism is used to handle the constraints and to allow both feasible afdieinfadsiles
to evolve in the swarm. Sun et al. (2006) have consiteemulti-objective multicast routing problem
with a number of constraints including delay, bandwidth, cost, delay jitter, and daskes. The
particles in their PSO algorithm use an integer coding that associatesi@anpagh a list of nodes from
the source to the destination. The PSO outperforms a GA on a small problem of 23 nodes.

In Wang et al. (2005 hybrid approach between a GA amBSOhas been developed to minimize
the tree cost in multicast routing problems with a number of constmaahtsling the bandwidth, delay,
and error rate in non-deterministic scenarios. The hybrid algorithm outperformsca Béth the tree
cost and the convergence rate. Another hybrid approach be®&emd PSO developed in Li et al.
(2007) has shown to outperform a standard GA on random multicast routing problemsvaevith t
objectives, to minimize the average delay and the link utilization ¢tredfi link capacity). The best half
of the GA population is firstly improved and then used as the starting positions for the partiele®in

2.4 Heuristics and Meta-heuristics for DCLC Multicast Routing Problems

Our proposed JPSO algorithm and a large number of algorithms in the literature toelbeglass of
source-based approaches, where each node in the multicast routing problem thasneltessary
information to construct the multicast tree. As opposed to source-basedcaggtodestination-based
approaches do not require that each node maintains the status information of the wvaile aad

multiple nodes participate in constructing the multicast tree. Later in experimmetatsons we compare

the performance of our proposed JPSO to all the algorithms reviewed in this section on a large number of
DCLC multicast routing test instances.

A number of early source-based heuristics developed for constructing low-cosasitiltiees with
delay bounds are based on the well known Prim's shortest path heuristic (PrimCa8%&n et al.,
2001) and the k-shortest path algorithm (Eppstein, 1998). The first source-based heuri3@i€
multicast routing problemis the Kompella-Pasquale-Polyzos (KPP) heuristic (Kompella et al., 1993),
which uses the Prim’s algorithm to obtain a minimum spanning tree with constrained paths, assuming
that the link delays and delay bounds are integers. The Bounded Shortest MulticastrAlBBMA)

(Zhu et al., 1995), one of the best known delay-bounded multicast routing algorithms develiyged in
1990s, iteratively refines the tree to lower costs based on the k-shortestgmithm. Due to its good
performance on tree cost, it is still being frequently used to compare the perferafamany recent
multicast routing algorithms. Although these early heuristics have verypgrémrmance with respect to
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the tree costbased on the Prim’s algorithm or the k-shortest path algorithm, their computing times are
usually extremely high for larger networks.

A large amount of recent research has been carried out to develop metéchdarislifferent large
DCLC multicast routing problems. Several tabu search algorithms have been develbeed,
Dijkstra’s algorithm has been widely used as the initialization method (Youssef et al.; 3R6&n-
Kapov and Kos, 2006; Ghaboosi and Haghighat, 2007a). Wang et al. (2004) find thaaithe m
disadvantage in the tabu mechanism is that the randomly selected paths oftém deddsjointed
multicast tree. In Ghaboosi and Haghighat (@#0initial solutions are iteratively refined by using a
modified Prim’s algorithm to switch links chosen froma backup path set. A candidate list strategy is
used to intelligently select neighborhood moves and show to speed up the search empralsothe
solution quality. In Skorin-Kapov and Kos (200@)tabu search is applied to improve the solution
quality within GRASP approach (Feo and Resende, 1995). The algorithm outperforms the KPP algorithm
(Kompella et al., 1993) and a tabu search (Skorin-Kapov and Kos, 2003) on the tested problems.

A number of population based algorithms have also been developed, including geneticnasggorit
(Haghighat et al., 2004; Wang et al., 2001). Ghaboosi and Haghighat (2007b) develop arpatly reli
algorithm where the worst solutions in a reference set of random solutions are iteraplaated using a
path relinking process. Simulation results show that the path relinking algavithperforms other
existing algorithms with respect to the tree cost. However, repairing infeasible solygioerated during
the path relinking is time consuming as many infeasible solutions occur when the networkreaseis.

In our previous work (Qu et al.,, 2009), a variable neighborhood search algorithm has been
developed for the DCLC multicast routing problem. Three neighborhoods are designsithdgpyath
replacement operators to iteratively replace high cost links in the theeal§orithm outperforma
number of algorithmsn the literature in terms of both the computing time and the tree cast. It
observed that the neighborhood design plays a crucial role in the performance of titlenglgord
effective initialization method leads to better final solutions withgharter computing time. In Xu and
Qu (2012), the analysis on the fithess landscape of the DCLC multicast routibignpréurther
demonstrates that the DCLD problem is highly instance dependant, thus demand®dadoanst
algorithms concerning the complex constraints in the problem.

3. Variants of the Particle Swarm Optimization

3.1The Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired population-based stocHasi@t gptimization
algorithm proposed by Kennedy and Eberhart (1995). It belongs to the class of swarnemaeellig
algorithms (Bonabeau, Theraulaz and Dorigo 1®®erhart, Shi and Kennedy, 2001). PSO simulates
simplified natural social systems such as flocks of birds or schools of fish. A pop(varm) is made

up of simple agents (particles) and evolves by following very simple rules inemtcdized way.
Particles are typically modeled as entities moving in a multi-dimensional continuous spacie ¢pace)

and interact by sharing both local and global information about their own poggmngons). During

the evolution (over iterations), the whole swarm evolves and complex behaviors emerge. For each
particle i in the swarm at iterationits position (solution)x and velocity (rate of change) are updated

in the evolution by using the following two equations:

Vijrr = GoVij + Cra(bi — X)) + Gra(g — %) + Gara(9i — %) (5)
Xijr1 = Xj + Mjr1 (6)
Equation (1) handles the velocity update by summing up four components:

- the first component, (%, is called inertia and enables the particle to keep the flow of itsopgev
movement, avoiding abrupt moves and premature convergence;



- the second component;rg€b; — X;), encourages the particle’s self-learning (cognition) ability by
using its best position achieved so farals a reference;

- the third component.G(g, — %), is the social factor that leads the particle to the best position so far
within the swarm, gwhich remembers the best performance sinftire entire swarm;

- the fourth componentgie(gi; — %), uses the best location found so far by the particles belonging to a
“social neighborhood” of the particle, i.e. in a neighborhood sub-swarm. ghis is to enhance the
exploration capacity of the particles and also to prevent premature convergence within the swarm.

Each of the four components in Equation (1) is associated with a weight@, ..., 3, and g0, 1], to
establish the importance of each component. Moreover, in order to confer a &tdmHzestior, the latter
three components are scaled by random values R ,(r3) drawn from an uniform [0,1] distribution.
Once the new velocity;y; is calculated using Equation (1), Equation (2) adds the new velocity to the
current position x so that the particle moves to a new position.

PSO is relatively easy to understand and to implement. A number of variants e¢kistiterature
and have been highly successful on a range of problems (see more detafihartEBhi and Kennedy,
2001). PSO variants remain as our future work based on a good understanding of thevpr&serihis
paper. More information about developments of PSO can be found in (Kennedy and Eberhart, 1995) and
at http://www.swarmintelligence.org/.

3.2The Jumping Particle Swarm Optimization

While the original PSO algorithm has been designed for continuous optonizathblems, a variant
called Discrete Particle Swarm Optimization (DPSO) has been designed twittealombinatorial
optimization problems, where particles move in a multi-dimensional discrdtaatign space. The first
DPSO approach was introduced by Kennedy and Eberhart (1997), where the positiensadficlesare
encoded by using binary strings, while the velocity equation remained unchanged. By ugmgid si
function, the velocity is mapped to a value in [0, 1]. If a quasi-random nuwabggled from a uniform
distribution between [0, 1] is greater than the mapped velocity, théoposikes value O, otherwise it
takes value 1. Since then, many variations of DPSO have been proposed and tested orofa range
problems including the travelling salesman problem (Onwubolu and Clerc, 2004), production sgheduli
problems (Allahverdi and Al-Anzi, 2006; Sha and Hsu, 2006; Tasgetiren, 2007; Anghinolfi and Paolucci,
2009), and resource constragtproject scheduling (Zhang et al., 2006).

A particular DPSO strategy called Jumping Particle Swarm Optimizalie8@) algorithm has
recently been introduced by Moreno-Perez et al. (2007) to solve combinatorialzaptmiproblems.
Later, it has been used by Consoli et al. (2008) to tackle the minimulim¢gaBéeiner tree problem and
Castro et al. (20®) to deal with the vehicle routing problem with time windows. The JPSQitim
does not use the concept of velocity to redefine how the swarm of particles imélvessearch space.
Instead, the metaphor behind JPSO is that of a number of elements (particles) (juowrigg) from
position to position (solutions) in a discrete search space. If there isicdepaith a good fitness in a
certain region of the space, the other particles in the swarm will be attradtecposition in order to
improve their own fitness.

In the original PSO, the four components in Equation (1) can becsplid parts. The first pary;
enables the particle to continue the exploration of its current position. The gEorgt, (b — x;) +
Cora(gj — X,j) + Grs(gij — %;) encourages the particle to move towards a better location with réspect
other particles' positions. Therefore, the particle that performs the move ftlevasher three different
attractors, and is thus named the follower in the literature.

Each of the attractors has a likelihogdgiven by a weight vectozcxz 1, x=0,...,3. In PSQ

only one type of moves is triggered at each iteration. When a stoppingporit@s not been met, the
algorithm generates a random number r uniformly distributed in [0, 1]. This nundeng with the
weights ¢ determines how the particle moves as follows:

e Ifrel0, o), the particle continues its current exploration (an inertial move);



o If refcy, Gotcy), the follower particle will move towards (be attracted to) the attrégtarhich is its
own best position achieved so far (a cognitive move);

o If re[cotcy, GtGit+cy), the follower particle will move towards the attractgrte best position in
the swarm so far (a social move);

o If re[cotcitc,, tci+c+c = 1], the follower particle will move towards the attractgr the best
positioned patrticle in its neighborhood sub-swarm at the current iteration (a glofgl mo

In the end, there are four types of moves, one from each component in the origiia fdr). The
swarm in JPSO jumps through the discrete space by following one of thesgpfsiof moves. One of
the main advantages of JPSO is that it retains the simplicity of the off@but works on a discrete
search space. Different components or techniques may be integrated in JPSO to imepeffieaty of
the particles movements. In the case of an inertial move, a mutation or neighborhood opemnaber ca
employed to explore the current position and to prevent premature convergence. For the esher thr
follower-attractor moves, crossover operators may be used to partiallyeirttia structure of the
attractors. This makes JPSO algorithm a good option for solving complexnadorial optimization
problems, and motivated our work on both Steiner tree and multicast routing problems in this paper.

4. The Proposed JPSO Algorithm

4.1 The Overall JPSO Procedure

The pseudo-code of our proposed JPSO algorithm (hereinafter named JPSOMR) for lsothinge
multicast routing problems and the Steiner tree problems is presenteyliie Ei A swarm of random
particles (randomly generated trees) is firstly created. Startomy fine source node, a random tree is
constructed by randomly selecting the next link which connects to any omstteauntil all destination
nodes have been added to the tree.

As explained above, a particle in the swarm of JARQIoes not possess a velocity component. Instead,
the swarm evolves based on different moves to the positions (solutions) of tickegaAt every
iteration of the evolution, each particle moves either based on its cpastion (an inertial move) or
based on the position of the attractor which is chosen by using the weight (asmtgnitive, social or
global move). Once the particle has jumped to a new poséiaral search is applied. The particle’s

best position and the swarm’s best position are then updated. The process is repeated until a stopping
condition is met, and the best position obtained by the swarm is returned amlislfition after the
evolution.



JPSOMR(G = (V,E), S R A, Co, €1, €, C3)
{ /I s: the source node; R: the destination set; A 2 0: the delay bound; c,: the weight vector;
Il p.c: the current position of the particle; p.n: the new position of the particle;
I p.bn: the best neighboring position of the current particle;
Il p.b: the best position found by the particle; g: the global best position found by the swarm.

Create |P| random initial feasible solutions for all particles in the swarm P
while (stopping condition not metio
for each(particle p in swarm) o
Generate a random numbeg (0, 1

case (r) { /l moves, see section 4.4
risin g: p.n=RandomMove(pX /l inertial move
risin ¢: p.bn= GetBestNeighborhood)p Il cognitive move
p.n=PathReplacement(p.bp.c);
risin 6: p.n=PathReplacement(p.p.o); /I social move
risin g: p.n= PathReplacement(g.c); Il global move
}

Greedy or first improvement local search on the new positiorn/faée section 4.5
Calculate the Cost and Delay of the new position p.n
if (((Cost(p.n) < Cost(p)pand (Delay(p.n< A)) or
(Cost(p.n) == Cost(p.b)) and (Delay(p.n) < Delayfp.b
then p.b=p.n; [l update the particle’s best position
if (((Cost(p.n) < Cost(g)) and (Delay(pA)) or
(Cost(p.n) == Cost(d and (Delay(p.n) < Delayj)
theng=p.n; I update the swarm’s best position
p.c=p.n;
end for
end while
return g;
}
RandomMove(p): a procedure that moves the particle p to a new position by choosing a superpath in the current
position and replacing it by a random new path.
GetBestNeighborhood(p): a procedure that returns the best position among the neighborhood particles of p.
PathReplacement(attractor, follower): a procedure that replaces the path from the source s to a destination in the
follower by choosing the best path in the attractor. See section 5.3.

Figure 1. The pseudo-code of the JPSOMR algorithm.

4.2The Representation

In our JPSOMR algorithm, the tree is represented by using a predecessoritrry wn elements
correspondingo the n nodes in the tree. The value of each element in the array is seinttethef the
node’s predecessor. Figure 2 presents an example of the representation of a trethevaeey (4-4-8-
0-5-x-3-1-6) represents the predecessor node of each corresponding node (node 0 to node &) in the tre

the predecessorarray 4 4 8 0 5 x 3 1 6
correspondingnodes: 0 1 2 3 4 5 6 7 8

Figure 2. An illustrative example of the representation of the tree, witle superpathg5-4), (4-0-3-6-8-2) and
(4-1-7). Values“a/ly’ denotes “cost/delay” of the links in the tree. Shaded nodes are the destination nodes, and node
5 is the source node (with no predecessor node, indicatéd by x



4.3The Path Replacement Operator

The path replacement operatoussd to update a particle’s position based on that of a chosen attractor.
Figure 3 shows three trees corresponding to a follower partjcke chosen attractor particlg dnd the
newly generated particl&’. The path replacement operator firstly finds the cheapest path-B8+2)

in the attractor treeJand then uses it to replace the corresponding (»a4R0-3-6-8-2) with the same
destination node O in the current particle This newly generated tré& becomes the new position of
the follower patrticle.

Current tree § Attractor tree T New treel”
Cost(T) = 271 Cost(T) = 216 Cost(l”) = 230
Delay(To) = 82 Delay(T,) = 75 Delay(’”) = 75

Figure 3. The path replacement operator replaces th€9path-3-6-8-2) in | by using the cheapest path (5-4-1-7-
8-2) in T, to create a new treE’. Node 5 is the source node, and shaded nodes are destinatien Tiusleelay
bound A = 82ms Values “a/b’ denotes “cost/delay” of the links in the tree.

In the path replacement operation, the selected path (to the same destination medbedpest path in
the attractor) is firstly removed from the follower particle. If a patfr;lPto another destination is
included in the selected path, this patrfp will not be removed from the follower particle tree. For
example, in the follower particle treg i Figure 3, the path (5-4-0) to another destination node 0 within
the selected patf{b-4-0-3-6-8-2) will remain in the tree. To avoid cycles in the generated he@ath
replacement operator always replaces the old path by starting from the destinatiof thedeew path
until the new path connects to an on-tree node. In Figure 3, the new path (5-4-lif7tBe2attractor
particle tree Tis added to follower glby starting from node 2, and adding node 8 until it connects to the
on-tree node 7.

For the DCLC multicast routing problem, the key constraint, the delay baundstricts the
generation of the multicast trees. The smaller the delay bound, the tighter the problemamedndthe
delay of path is always checked while implementing the path replacement totgedtrat the delay
bound is satisfied in the newly generated tree.

4.4Moves of Particles

In JPSQ/R, there are two types of moves: moves towards an attractor and moves amgndéeht
position (no attractor involved). Depending on where the sampled random vallle wifain the
intervals defined by the weight vectqr a specific attractor (or none) is selected to influence how the
particle moves from its current position to a new position. The particle moves as follows:

- Ifrel0, o), no attractor is selected, thus the particle moves around its current posit®is dbne
by randomly removing a superpath in the current tree, and reconnectingutimgewo sub-trees
by using a random link.

As in our previous work in (Qu et al., 2009), superpath has been used in operationgheithin
inertial particle moves to reduce the tree cost (see Sections 4.4 belovgupHipath is the longest
simple path between two end nodes in the tree, where all internal nodes, lexdejot €nd nodes of
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the path, have a node degree of 2. In the tree presented in Figure 2, themeasaparpaths which
may be involved in the inertial particle moves.

- If re[cq, cotcy), the best position achieved by the particle so fagrigbchosen as the attractor. If
re[cotci, Gtci+cy), the attractor is the best position achieved by the whole swarm so)falf (g
refcotci+c,, 1], the best located particle in the neighborhood of the current pagigladts as the
attractor.

Once the attractor is selected, the path replacement operator adds the cheafrest pla¢hsource
to the destination in the selected attractor and removes the corresponding thatliollower (see
Section 4.3 above). The added path should not be already in the follower particlejisetheerw
random move is applied to the follower patrticle.

Based on the predecessor array representation, the movements of thes paidieplemented by
replacirng the predecessors of the nodes in the original pathéogodes in the new selected link/path.

4.5Local Search Heuristics

After each move, a local search is applied to improve the new particle’s position. In the local search
implemented here, a simple neighborhood operator operates upon the nodes inAhesigdehor of the
current tree is obtained by removing a non-destination node and creating a new spagnofgthe
remaining nodes using the Prim’s spanning tree algorithm (Betsekas and Gallager, 1992). Two variants
of local search have been tested in our JPSOMR algorithm. The firstdéacah sisea greedy heuristic
to select the best neighbor from all neighboring solutions of the currenfTtreesecond uses first
improvement heuristic, where the first improving neighbor solution is selected.

If the newly generated particle after the local search corresponds to arketténis new particle
replaces its best position and/or the best global position so far. A treeniassbetter if it has a lower
cost and satisfies the delay bound constraint, or it has the same cost and witlkradetagl Therefore,
the particle in JPSKR finishes its jump by updating its best position and the best global position so far.

5. Performance Evaluation

5.1 Simulation Environment for Steiner Tree and DCLC Multicast Problems

We implement and evaluate our JAE® algorithm by using the multicast routing problem simulator
(MRSIM), which is adopted based on the generator developed by Salama et al. (1997nuléiersi
generates random network topologies by using a graph generation algorithm (Waxman, 1988).

For the DCLC multicast routing problems, the link delay function D(e) is defiviein the
simulator as the propagation delay of the link. We assume that queuing and transmissisrael
negligible. The link cost function C(e) is defined as the current total barfdwidtthe links in the
computer network. The network nodes are randomly positioned over a simulated rectamegutdrsize
4000%x4000kn?. The Euclidean metric is used to determine the distance )(between pairs of
connected nodes (u, v). Within the simulator, diek= (u, v) connecting nodes u and v are placed with a
probability R, , given by:

I:)u,v =B e—l(u, Wial a, ,B € (O,l] (7)

L in (7) is the upper bound of the distance between two nodes in the network. Thetpes@andp are

used to generate different DCLC multicast routing problems within theedesatworks of a range of
characteristics. For example, setting a lgfgalue gives nodes a higher average degree, and setting a
largea value gives short distances between nodes. More details can be found in Salafi®@7)alin

our simulations, we set= 0.25 angs = 0.40. Different values of the delay duA are set in our tests as
reported below.
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The simulator not only produces a wide range of network topologies withediffenharacteristics,
but also provides a unified framework for fair and sound comparisons. As mentionediam 3etin
the literature different algorithms have been developed and tested using diffaesstdaf DCLC
multicast routing problems. Simulations have been run on different platfbtragrtaking it difficult to
run fair comparisons. To warrant a fair comparison, the JPSOMR algorithm areleitted competitor
multicast algorithms from the literature have baerimplemented in this work within the same
simulation environment and compared on exactly the ssshef simulated DCLC multicast routing
problems instances generated in the simulator.

For the Steiner tree problem, we selected two sets of problem instances from titwra®R
focusing on instance sets B and C, and used them to test our algorithine &xsting algorithms in the
literature. Although a large number of new instances have been added to theldiigrafi{och et al.,
2002), during the yearshesebenchmark datasets still serve as the most widely tested problems in the
OR community and motivated the development of meta-heuristic algorithms.iithee problems the
links are assigned only a cost function, we generated their delay values randomly mula¢osi The
delay bound is set as infinity in the simulator so no delay restriction is etfaree the generated
network is a true Steiner tree problem. All our simulations have been itime&0for the small category
B instances and 20 times on the larger category C instances.

All experiments have been run on a Windows XP PC with an Intel Core 2 Duo B8BRGHZ
processor and 8GB of RAM. In addition to reporting the comparison resultge @olution quality and
the computing time from of our proposed JREO algorithm in this paper, to encourage scientific
comparisons, we also provide the details of all the problem instances tested and iheeatqdaesults
at http://www.cs.nott.ac.uk/~rxg/benchmarks.htm.

5.2Experimental Results on Steiner Tree Problems

We first evaluate our JPSMR algorithm on the benchmark categories B and C Steiner tree problems in
the OR library. The category B instances are based on networks with 50, 75 amad@80vith 63 to

200 links, and the category C instances include a set of larger networks wittod& with 625 to
12500 links. Details of their characteristics are given in Tables 1 and 2plihel solutions have been
obtained in (Beasley, 1990) by incorporating the lower bound and problem reductiatetastd from

the original problems within a tree search. Due to the different computingrpiaied to run this exact
method, the computing time to find the optimal solution is not provided hereeésr@ence. More details

can be found in Beasley (1990).

Table 1. The characteristics of category B instances from the OR-librathgViumber of nodeqE|: the number
of links; |R|: the number of destinationgthe instances; Opt.: the cost of the optimal solution.

IVl [E[ |R] Opt. IVl [E| |R] Opt. VL |E| IR| Opt.
BO1/50 63 9 82 [BO7|75 94 13 111 |B13|100 125 17 165
B02|50 63 13 83 |B08|75 94 19 104 |B14|100 125 25 235
B0O3|50 63 25 138 |[B09|75 94 38 220 |B15|100 125 50 318
B04|50 100 9 59 |B10|75 150 13 86 |B16|100 200 17 127
BO5/50 100 13 61 |B11|75 150 19 88 |B17|100 200 25 131
B06|50 100 25 122 |B12|75 150 38 174 |B18|100 200 50 218

Table 2. The characteristics of category C instances from the OR-lipfatye number of nodegE|: the number
of links; |R|: the number of destinations in the instances; @ptcost of the optimal solution.

No.[ V| [E[ Rl Opt.|No.| V| [E| |R| Opt.|No.| V| |E| |R| Opt.[No.[ V| |E[ |R| Opt.
C01/500 625 5 85 |C06|500 1000 5 55 |C11|500 2500 5 32 |C16|500 12500 5 11
C02|500 625 10 144 [CO7|500 1000 10 102 |C12|500 2500 10 46 |C17|500 12500 10 18
C03|500 625 83 754 |C08|500 1000 83 509 |C13|500 2500 83 258 |C18|500 12500 83 113
C04 | 500 625 125 1079|C09|500 1000 125 707 |Cl4|500 2500 125 323 |C19|500 12500 125 146
C05|500 625 250 1579| C10|500 1000 250 1093| C15|500 2500 250 556 | C20|500 12500 250 267

5.2.1 The Size of the Swarm
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To evaluate the impact of the swarm sige]PSOMR, in the first group of experiments, we compare
JPSQ/R with 6 different swarm sizes (|P| = 1, 2, 5, 10, 20, 30) on the smaller category &8 8tsn
instances. Note that the special case of when |P| = 1 may be seen as a localtkeatblam a PSO, and
thus this experiment also compares the performance of local searcht &g with different swan
sizes. Weight vector is set ag=c; = ¢, = ¢; = 0.25, and the number of iterations in the evolution is set
to 100. No local search is applied to obtain an unbiased view of the impaa& si#im size. The
average tree costs are given in Table 3.

Table 3. JPSMIR with different swarm sizes and no local search. The best resulisesmented in bold. Opt.: the
optimal values for each instanag;ost = (cost Opt.)/Opt.; 6* = the relative deviatioa to the optimum, i.ed/Opt.
Best results are in bold (as in all other tables).

PI=1 PI=2 P|=5 |P|=10 |P|=20 |P|=30
Acost O0* |Acost O* |Acost O* |Acost O0* |Acost O* |Acost OF
BO1 | 82 |0.1720.1940.0520.075 0 0 0 0 0 0 0 0
B02 | 83 |0.4200.1720.1760.0900.1130.0620.0990.0410.084 0 [0.084 O
B03 | 138 |0.2650.0690.1920.0560.1710.0400.1480.0040.110 0.039(0.1180.026
B0O4 | 59 (0.6930.1830.5050.0690.4390.0430.3830.0550.3050.0470.266 0.058
BO5 | 61 (0.4150.2000.2490.1320.1000.0460.0900.0450.0620.0190.049 0.013
BO6 | 122 (0.5010.1500.2900.0430.2440.0390.2030.0240.1910.0320.175 0.031
BO7 | 111 |0.3030.1720.2330.1090.0390.0350.0760.0310.0250.0130.016 0.013
B0O8 | 104 |0.4180.1820.1940.1020.1880.0960.0900.0330.085 0.019(0.0910.020
B09 | 220 (0.1530.0720.1050.0480.0550.0090.0590.0080.0500.0070.045 0
B10 | 86 (0.8930.1970.5730.17C00.6050.1180.4370.0350.424 0.007|0.424 0.010
B11 | 88 (1.0130.2030.7500.1120.6810.0710.5910.0230.5630.0130.522 0.029
B12 | 174|0.6110.1280.4470.1140.3430.0560.3170.0320.289 0.014({0.3010.010
B13 | 165|0.3560.1120.2530.0980.1120.0460.0880.0310.0690.0430.051 0.015
B14 | 235|0.2190.0320.1960.0320.1710.0190.1570.0190.1420.0160.129 0.028
B15 | 318 |0.1730.0450.1470.0380.1120.0090.1080.0060.10C0.0080.097 0.011
B16 | 127 |0.7760.2020.4610.1450.4220.1050.276 0 |0.266 0.018/0.276 O
B17 | 131]0.8580.2770.4660.3430.1630.09710.0920.0160.092 0.005/0.092 0
B18 | 218 |0.5820.1660.4160.1390.2490.0110.2500.0130.234 0 |0.231 0.004

Prob.|Opt.

We carried out the paired t-test (Montgomery, 2005) to analyze the statidifiesience between
JPSOMR with different swarm sizes. If the p-value obtained from the t-test isleanthln 0.05,
comparison results are usually referred as significantly different. This @ivetier insight, compared to

the average results, in justifying statistical difference between algorithformpances. The p-value on
results of JPSMR with |P| = 10 and |P| = 20 is 2.3E-6, indicating that MSQvith |P| = 20 is
significantly better than that of with |[P| = 10. However, the p-value of NFRS@ith [P| = 20 and |P| =

30 is 0.05, indicating that JP8MR with |P| = 20 and |P| = 30 show no significant differences. Since the
computing time of JPSI@R with |P| = 20 is much less than that of |P| = 30 (see Figure 4), we use |P| =
20 asan appropriate swarm size for our problems.

The average computing time is presented Figure 4, clearly showing the increasmgicg time
for larger swarm size in JPSOMR. It can be seen that instance B13 requires mudichde®mpared to
other instances, indicating that difficult Steiner tree problems are naisaeite of large size. Across all
other instances, computing times are stable with small standard deviations in JPSOMR with langer swar
sizes |P| =20 and 30.
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Figure 4. Computing time of JPSR of different swarm sizes without local search on small category B instances

Additional tests that we ran using JA8R and the greedy local search showed that, although no
obvious difference has been found on small instances, MRS®@ith population size of |[P| = 20
performed the best (compared against |P|)0B0arge instances. Although more particles are helpful
for obtaining good results, a too largearm actually hinders the algorithm’s performance.

5.2.2 The Cooperation between Particles

A key feature of PSO is that during the search, particles in the swarm codpesht@ring information

of local or global better positions in order to better explore the search spacsecdmd set of
experimentdgs conducted to find out if this is actually happening in our JABRORecall that the values

in the weight vector,c= (G, ¢, G, C3) determine the extent to which a particle updates its position based
on its own behavior or that of the other attractor particles in the swarrax&mple, setting,& (1, 0, O,

0) means that the particles do not cooperate but make their next move based onromiyntipegvious
positions. The JPS@R is thus equivalent to a multi-start local search (since a local seaphlisd at

the end of each particle move), where each particle carries out its very awah d®/ inertial
movements. When albcc, 6, G take values which are different from zero, particles cooperate by using
both inertial and attractor movements within a true JAB@rocess.

Based on the observation from the first set of experiments, we set the swarm siz20|Rand
compared JPS@R with two different weight vectors{e 1, g=¢c,=c;=0)and (=Cc;=C, =Cz3 =
0.25), and with two different local search strategies.adair comparison, we set the same computing
time for all the four variants of JPSR, namely 30 seconds for small instances B01-B12 and 120
seconds for large instances B13-B18. The average tree costs by JPSOMR variaetsategory B
instances are given in Table 4.

Table 4. JPS®IR using different settings of cooperation between particles and different local steatefies. The
best results are presented in bold. Opt.: the optimal values for each inttahcérst improvement local search;
LS2: greedy local searchcost = (cost -Opt.)/Opt. Computing time = 30 seconds for B01-B12, 120 seconds fo
B13-B18.

Average Tree Acost Pl =20 Average Tree Acost
Co=1 ¢ =0.25 =1 ¢, =0.25
Prob.Opt.| LS1 LS2 | LS1 LS2 |Prob.Opt.| LSI LS2 | LS1 LS2

IP| =20

BO1 82 0 0 0 B10 86 | 0.012 0.042| 0.012 0
BO2 83| 0.010 0.011 0 B11 88 0 0.012 0 0
BO3 138| O 0 0 B12 174| 0.041 0.040| 0.005 0
BO4 59 | 0.034 0.027| 0.008 B13 165| 0.024 0.024| 0.024 0
BO5 61 0 0 0 B14 235| 0.029 0.029| 0.019 0.008

B06 122| 0.031 0.039| 0.011
BO7 111| 0.008 0.008| 0.005
BO8 104| 0.034 0.040| 0.004

B15 318| 0.035 0.028| 0.011 0.006
B16 127| 0.013 0 0.009 0
B17 131| 0.028 0.027| 0.014 0.006

O O O OO0 o0 o o
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B09 220| 0.014 0.013]| 0.004 0 |B18 218/ 0.051 0.049| 0.005 0

It is obvious that JPS@R with local search strategies achieves much better results than that &iRPSO
without local search, and we thus did not present the results of the latter i Taééetheolumn “|P| =
20” in Table 3 for detailed results). We can see that JPSIR with cooperation (¢c= 0.25) and the greedy
local search performs the best among the four JPSOMR \savigtht different settings. The p-value
obtained from a paired t-test on JABR with and without cooperation is 4.5E-4, showing that JARO
with cooperation is significantly better than JRE® without cooperation. The results clearly
demonstrate that the cooperation among particles can greatly improve thenpecd®rof JPSMR to
achieve better results than its multi-start variant.

5.2.3 The Evolution of the Swarm

In this set of experiments we investigate the evolution of the swarm oveertiiéits on three instances

of different sizesinstance B12 with network size 75, instance B16 with network size 100 and instance
CO01 with network size 500. We show the evolution of the best particle in the sWafRBOMR for
these three instances in Figure 5, Figure 6 and Figure 7.

Figure 5 shows that instance B12 is easy to solve regardless of the diffétiags sS8 JPSOMR
although the optimum is found earlier by the algorithm with greedy loeatiseFor the medium size
instance B16, Figure 6 shows that although JABOeaches the optimum with different settings, the
variant with the cooperation and greedy local search is the faghélat the variant with no cooperation
and greedy local search is the slowest. For the large instance C01, Figure 7 showsatagabperation
and greedy local search provide the fastest convergence to the optimum. dasthisthe slowest
algorithm is the JPSOMR with cooperation and without greedy local search. This datesngiat
particularly for the large instance, greedy local search contributesaiter performance in JPSOMR
with or without the cooperation.

184

—&— Non-Greedy C0=1
182 1 —a— Greedy C0=1
—=— Non-Greedy Cx=0.25

1 4
80 \ —o— Greedy Cx=0.25
178 23 * o —*— Optimum

176 A S i :
174 1

172 1

Tree Cost

170 1

168

1 2 3 4 5 6 7
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Figure 5 The evolution of JPSER with |P| = 5, different settings of cooperation and local searehSiainer tree
problem of small size (network size = 75, instant&)B
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Figure 6 The evolution of JPSKR with |P| = 20, different settings of cooperation and local searchSteirger
tree problem of medium size (network size = 100, instari¢. B
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Figure 7 The evolution of JPSKR with |P| = 20, different settings of cooperation and local searchSteirger
tree problem of large size (network size = 500, instarith.C

Instance B12 in Figure 5 is an easy problem thus the local search seems to ad tineckork and the
cooperative nature of JP®MR is not obvious. However, it is interesting to see that, without the
cooperation, JPSOMR with the first improvement local search is presents a slowengeane to the
optimum. Instance B16 in Figure 6 is harder to solve, and it is clear thabdperation within the
swarm helps the search to converge to the optimum. For the hardest instamté-igade 7, the greedy
local search is clearly beneficial. For all instances, the local search has shdighly affect the
performance of JPS@R. No matter what cooperation between particles in the swarm is applied, the
JPSOMR algorithm with greedy local search converges faster than NIRS@ith the non-greedy local
search. On the other hand, JM8® with ¢, = 0.25 finds the optimal solution faster compared with
JPSO/R with o= 1 in Figure 6 and Figure 7. This indicates that particles cooperation is also important
to the performance of JPMR, i.e. it performs better if particles cooperatge£d.25) rathethan just
randomly move (&= 1) in the swarm.

5.3Comparing JPSOMR with Other Approaches in the Literature

After studying the behavior of the proposed JPSOMR on selected instaeceeywconduct extensive
experiments to evaluate the overall performance of the proposedMRP&Dother algorithms in the
literature. We set (= c; = ¢; = ¢ = 0.25), with swarm size of |P| = 20 and the greedy local search in
JPSOMR.
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5.3.1 JIPSOMR and Other Approacheson Steiner Tree Problems

The JPSMR algorithm is firstly compared with the GRASP algorithm developed by Skapov and

Kos (2006) on the category B instances. The stopping condition is set to a pre-defined oumber
iterations, namely 100 and 10 for category B and category C instances, redpedtv obtain
comparable results we re-implemented the GRASP algorithm with the same pasamseiterSkorin-
Kapov and Kos (2006), i.e. the number of iterations is 5, the paramdtemmanage the restricted
candidate list is set as 5, and the number of iterations without improventbatlo€al search procedure

is 2.

Table 5 presents the average tree cost, the best cost and the average computhghtnteo
algorithms on thecategory B instances. The average cost obtained by NIRSI® better than that of
GRASP in eight instances, however, by consuming more computing time. The proposed JPSOMR
performs better than GRASP, and is able to find the @ptsolution at each run, with only one
exception (B15).

Table 5. Comparison between JA#R and GRASP (Skorin-Kapov and Kos, 2006) approaches on smaller
category B instances. The best results are presented in bold. Opt.: the waliraalfor each instancaMean =
(mean- Opt.) / Opt.; ABest = (best — Opt.) / Opt.

A= JPSOMR GRASP A= JPSOMR GRASP
Prob. Opt.]AM ean ABest Time(s)|/AM ean ABest Time(s)[Prob. Opt./AM ean ABest Time(s)|AM ean ABest Time(s)
BO1 82| O 0 0.002| O 0 0.086|/B10 8| O 0 1469| O 0 2394
BO2 83| 003 0 2935 O 0 0.101|B11 8| O 0 1.141|0.002 0 0.646
BO3 138| O 0 0.048| 0 0 0.136|B12 174 O 0 0.8 0 0 1.255
B0O4 59| O 0 0.063| 0 0 0.067|B13 165 O 0 93421 0.039 0 2.099
BO5 61| O 0 0815 0 0 0.108|B14 235/ 0.001 O 239.9210.002 0 1.816
BO6 122 O 0 0.618|0.018 0 0.496|B15 318/ 0.005 0 320.51%0.012 0.006 5.178
BO7 111| O 0 0213| 0 0 0.183|B16 127 O 0 10503 0.018 0 1.611
B0O8 104 O 0 0697 O 0 0.424|B17 131|/0.002 0 15933 O 0 1.799
B09 220/ O 0 0199 0O 0 0.641|B18 218/ O 0 1.136/0.001 0 4.502

We then test the computational expenses of JS@nd GRASP algorithms, the average time needed
to find the optimal solution is presented in Table 6. If the algorithm faildhd the optimal solution
within a limited time of 60 seconds, the best result obtained and the corregptimdi is provided. For
small instancesB1-B12) in category B, our JPSOMR spends less time to find the optimal solution for
seven out of 12 instances. For larger instances, GRASP performs slightly thatt our JPSOMR,
although the differences are mostly very small.

Table 6. Comparison between JA®® and GRASP (Skorin-Kapov and Kos, 2006) on category B instances. The
best results obtained are presented in bold. Opt.: the optimal values forstanbépcost = (cost Opt.) / Opt.

A= JPSOMR GRASP A= JPSOMR GRASP

Praob. Opt.|Acost Time(s)|Acost Time(s)|Prob. Opt. Acost Time(s) Acost Time(s)
BO1 8| 0O 0029 | 0 0.08|/B10 86 | 0 1.771| 0 0442
BO2 83 (0.030 2935 0 0101 B11 8| O 0964| 0 0811
BO3 138| 0 0045 | O 0.136|B12 174 0 1073 | 0 1.257
BO4 59| 0 0066 | O 0.067|B13 165|0.01543.432] 0 15.163
BO5 61| O 008 | O 0.108| B14 235|0.003 41.803] 0 2557
BO6 122 0 0824 | 0 1.201|B15 318|0.006 43.946|0.001 27.484
BO7 111| O 031 | 0 0183 | B16 127| 0 11525 0 2557
BO8 104| 0O 0.538| 0 0431 | B17 131|0.005 49.862| 0 181
BO9 220 O 0214 O 0.644|B18 218 O 1056 | O 7.945
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We further test JPS@R compared against GRASP and another recent algorithm, DPSO by Zhong et al.
(2008), on the larger and harder category C instances. The DPSO algorithm teast@etafter 1250
iterations, or after 250 continuous generations where no better results ¢annbe To enable the
comparison among the three algorithms, we therefore set the same number ofdtétatations = 10)

in both JPS®IR and GRASP, which is much smaller than that of DPSO, and compare their results on
category C instances in Table 7. For 12 of the 20 category C instance8/RPB8Ccessfully found the
optimal solutions at least once. Although the DPSO algorithm found the beist f@@f 20 problems,

the JPS®IR approach found smaller tree cost in seven of 20 problems using a much smaller atim
iterations.

Table 7. Comparison between JABR, GRASP (Skorin-Kapov and Kos, 2006) and DPSO (Zhong et al8)200
approaches on larger category C instances.

A= JPSO GRASP DPSO
Prob.|Opt.|AM ean|ABest|AWor st|AM ean|ABest|AWor st|AM ean|ABest | AWor st
C01|8 [0.012] 0O | 0035]| O 0 0 2.0
C02 | 144 | 0.035|0.014 0.056| O 0 0 2.0

C03 | 754 | 0.009|0.007 0.011| 0.009|0.008 0.009 | 2.001
C04 |1079| 0.004|0.001 0.006 | 0.018|0.007 0.021| 2.0
C05 |1579] O 0 0 0.005|0.005( 0.005| 20
C06 | 55 0 0 0 0 0 0 2.0
C07 |102| 0.007| O | 0.010 0 0 0 2.0
C08 (509| 0.001 | O | 0.002| 0.017|0.016/ 0.018 | 2.002
C09 | 707 | 0.005|0.003 0.007 | 0.010{0.008 0.011 | 2.003 |0.
C10 |1093{ 0.001| O | 0.001| 0.003| O | 0.004| 2.001 0.005
Cl11 | 32 | 0.009 0.031| 0.019| O | 0.031| 2.003 0.031
Cl2 | 46 0 0 0.009| 0 | 0.022| 2.0 0 0

C13 | 258 | 0.002 0.004 | 0.017|0.008/ 0.023| 2.010{0.004 0.019
C14 | 323 | 0.003 0.003 | 0.015|0.006| 0.025| 2.005|0.003 0.009
C15|556| O 0 0.001f O | 0.005| 2.001| O | 0.004
Cl6| 11 | 0.091|0.091 0.091| 0.036 | O | 0.091|2036| O | 0.091
Cl7|18 | 0011 | O | 0.056| 0.044| 0 | 0.056| 2.022| O | 0.056

C18 | 113| 0.024 |0.018 0.027 | 0.044|0.027 0.053 | 2.027|0.018 0.053
C19 146 0.014]0.014 0.014| 0.037|0.034 0.041|2.010| O | 0.021
C20|267| O 0 | 0.004| 0.009|0.004 0.015| 2.0 0 0

0.005
0.001

0.006
01 0.006

oO|0o|9|Oo|Oo|Oo|o|Oo|O|O|O
o

5.3.2 JPSOMR and Other Approaches on DCL C Multicast Problems

We now compare JPSMR to other algorithms for the DCLC multicast problanthe literature. Details

of these algorithms can be found in Section 2.4. Three random topologies have beeadjéoregach
network size of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 nodes, where the link cost depbads on t
length of the link, and all the link delays are set to 1. The group size (humberichtimss) is set as

30% x network size. Different delay bountigre set depend on the network sixe=(7ms for network

sizes of 10-30A = 8ms for network size 40-60) = 10ms for network size 70-80, artl = 12ms for
network size 90-100). This setting is the same as in the simulations designed by Ghabldagiagitht
(2007b) and Qu et al. (2009). The simulation has been run 10 times on each reetdark. The
average tree cost for all the random networks are shown in Table 8.

Table 8. Average tree costs from existing approaches in the literatD€b@ multicast routing problems with
random networks of 10-100 nodes. The lowest tree costs are in bold.

Algorithms Average Tree Cost
Heuristics| KPP (Kompella et al., 1993) 905.581
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BSMA (Zhu et al., 1995) 872.681

GA-based | Wang et al. (2001) 815.969
Algorithms | Haghighat et al. (2004) 808.406
Skorin-Kapov and Kos (2003) 897.875

TS-based | Youssef et al. (2002) 854.839
Algorithms| Wang et al. (2004) 869.291

Ghaboosi and Haghighat (2007 739.095
Path Relinking | Ghaboosi and Haghighat (2007 691.434
VNSMR | Qu et al. (2009) 680.067
GRASP | Skorin-Kapov and Kos (2006) 669.880
JPSOMR | Our proposed JPSR algorithm 662.100

It is clear from Table 8 that JIP#R outperformed all existing algorithms in the literature, producing the
best average tree cost amongst all the algorithms tested. The GRASP and amus pviNSVIR
algorithm are the closest competitors. Note that in the literature all hiee wbrks had reported the
average results on all problem instances of different sizes and thus we providesbrapeiison in
Table 8.

To make a closer comparison betweers#taree best approaches, Table 9 provides details of the
average tree cost for each of the individual network of different size. Computinig 8eteas 60 seconds
to all three competitor algorithms. The lowest tree costs highlightedld clearly show that JPSOMR
has the best overall performance, obtaining the smallest tree costs on tfieelarfgest network sizes
and the same best tree costs on the other two smaller networks. On only theepetfvork, one of the
other algorithms achieves better result than JPSOMR.

Table 9. Average tree cost of JA8R on 10 network sizes compared with VNSMR and GRASP in Table 8.
Computing time = 60 seconds.

Network Size| VNSMR GRASP JPSOMR
10 94.667 94.667 94.667
20 282.333 270.667 270.667
30 415.667 394.667 395.667
40 518 526.467 526
50 726.667 697.067 687.333
60 812.333 761.133 748.667
70 805.333 797.533 785.667
80 922.333 902.667 889.667
90 1182.67 1201.933 1194
100 1040.67 1052 1028.667

6. Conclusions and Future Work

In this paper, we have presented a discrete particle swarm optimizationhatgtwitsolve both the
Steiner Tree problem in the OR Library and the Delay Constraint Least Cost mudiitas problems.

The proposed JPSOMR algorithm has been developed based on the Jumping Particle Swarm
Optimization (JPSO) developed in the literature. Particles in the swarm fj@mpone position to
another in the discrete search space by making changes to the tree representedbyethteposition.

This has been carried out by using path replacement operations which have been des$igegdrgito

the specific structure and features of the multicast/Steiner tree. A loceh sased to further improve
solutions after the move of the particles.

We conducted an extensive set of experimentation on the benchmark Steiner tree problems to
understand the behavior of our proposed JPSOMR algorithm with respect to the coopetatern
particles, the size of the swarm and the effect of the different local seatelgissaWe found that the
cooperative nature of JIP$R is an important factor to its success in solving the probiertiss study,
and a good number of particles (20 in our case) are required for the algaritbmecceed. Further
experiments have also been carried out to assess the performance MRIBSGolving a set of Delay
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Constraint Least Cost multicast routing problems. Compared with sevestihgxalgorithmsin the
literature which have been re-implemented within the same simulation environimeniPSOMR
algorithm shows a very robust performance, and provides comparable or betterthesuthose of the
considered competitors on the exact same benchmark problem instances. We beliasvéhéhigrst
study that provides an extensive investigation of a JPSO algorithm on both the 8&sinend the
DCLC multicast routing problems tested in the literature. Comparativegesutdetails of the problem
instances have been made publicly available at http://www.cs.nott.ac.uk/~octgfisrks.htm for
sdentific comparisons.

We conclude that swarm optimization is a good technique to tackle mutticéisty problems and
the underlying Steiner tree problems. The proposed BS@as shown to be very successful for
solving both problems. In our future work, we intend to consider a wider range afasultouting
problems with multiple objectives and more real life features and constraints.
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