76 research outputs found

    Regulation of CD4+ T cell responses during parasitic infections

    Get PDF

    Use of Moodle platform as a support for face to face university

    Get PDF
    Este estudio buscó identificar las competencias tecnológicas de los docentes de una Universidad al utilizar Moodle como complemento a sus clases presenciales. Se analizó el uso de dicha plataforma mediante un enfoque cualitativo-descriptivo, con la participación de cinco docentes. Se realizaron entrevistas y análisis de la utilización de la plataforma, como resultado se identificaron las competencias tecnológicas asociadas al uso de Moodle. Se concluye que las herramientas tecnológicas no son utilizadas a su máxima eficacia para mejorar la práctica del docente, por lo que se recomienda capacitación sobre su uso y beneficios.This study aimed to identify the technological competences of the teachers of a university that used the Moodle platform as a complement to their classroom teaching. The use of the platform was analyzed trough a qualitative and descriptive approach, with the participation of five teachers. Interviews and analysis were carried out, and as a result the technological competences related to the use of Moodle were identified. It is concluded that technological tool are not used to their maximum efficiency to improve the teaching practice, for which is recommended to implement training about their use and benefits

    Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice

    Get PDF
    Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent sup-pressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1 beta, IFN gamma, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD

    Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice

    Get PDF
    Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite–host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1β, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD.RE was supported by an “Early Postdoc Mobility” fellowship (P2ZHP3_161693) from the Swiss National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation

    Get PDF
    Plasmacytoid dendritic cells (pDC) are activators of innate and adaptive immune responses that express HLA-DR, toll-like receptor (TLR) 7, TLR9 and produce type I interferons. The role of human pDC in malaria remains poorly characterised. pDC activation and cytokine production were assessed in 59 malaria-naive volunteers during experimental infection with 150 or 1,800 P. falciparum-parasitized red blood cells. Using RNA sequencing, longitudinal changes in pDC gene expression were examined in five adults before and at peak-infection. pDC responsiveness to TLR7 and TLR9 stimulation was assessed in-vitro. Circulating pDC remained transcriptionally stable with gene expression altered for 8 genes (FDR < 0.07). There was no upregulation of co-stimulatory molecules CD86, CD80, CD40, and reduced surface expression of HLA-DR and CD123 (IL-3R-α). pDC loss from the circulation was associated with active caspase-3, suggesting pDC apoptosis during primary infection. pDC remained responsive to TLR stimulation, producing IFN-α and upregulating HLA-DR, CD86, CD123 at peak-infection. In clinical malaria, pDC retained HLA-DR but reduced CD123 expression compared to convalescence. These data demonstrate pDC retain function during a first blood-stage P. falciparum exposure despite sub-microscopic parasitaemia downregulating HLA-DR. The lack of evident pDC activation in both early infection and malaria suggests little response of circulating pDC to infection

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS

    Get PDF
    BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2ΔT) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2ΔT mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNγ+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2ΔT mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection

    Early reduction in PD-L1 expression predicts faster treatment response in human cutaneous leishmaniasis

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka. Pentavalent antimonials (e.g. sodium stibogluconate; SSG) remain first line drugs for CL with no new effective treatments emerging. We studied whole blood and lesion transcriptomes from Sri Lankan CL patients at presentation and during SSG treatment. From lesions but not whole blood, we identified differential expression of immune-related genes, including immune checkpoint molecules, after onset of treatment. Using spatial profiling and RNA-FISH, we confirmed reduced expression of PD-L1 and IDO1 proteins on treatment in lesions of a second validation cohort and further demonstrated significantly higher expression of these checkpoint molecules on parasite-infected compared to non-infected lesional CD68+ monocytes / macrophages. Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our data support a model whereby the initial anti-leishmanial activity of antimonial drugs alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and clinical cure. Our findings demonstrate that PD-L1 expression can be used as predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support further evaluation of PD-L1 as a host directed therapy target in leishmaniasis

    Bienestar y familia, una mirada desde la psicología positiva

    Get PDF
    Este libro está dirigido a estudiantes y profesionales en psicología y áreas afines, como enfermería, trabajo social o educación, y a los interesados en personalidad positiva. Cada capítulo se presenta de manera sencilla y con una estructura didáctica, pero sin perder rigor científico y calidad de la revisión, con el fin de facilitar el acceso a la información sobre bienestar individual, familiar y social de una forma accesible para adentrarnos al estudio de temas de psicología positiva. Dadas las temáticas, se consideró pertinente dividir este libro en dos secciones: I. Psicología positiva y bienestar. II. Bienestar individual y familiar.Universidad Autónoma del Estado de México y Ediciones y Gráficos Eón, S.A. de C.V

    Handbook of Active Ageing and Quality of Life: From Concepts to Applications

    Get PDF
    La edición de este libro estuvo a cargo de Fermina Rojo-Pérez y Gloria Fernández-Mayoralas.El documento adjunto contiene la cubierta, portada e índice del libro.This handbook presents an overview of studies on the relationship of active ageing and quality of life. It addresses the new challenges of ageing from the paradigm of positive ageing (active, healthy and successful) for a better quality of life. It provides theoretical perspectives and empirical studies, including scientific knowledge as well as practical experiences about the good ageing and the quality of later life around the world, in order to respond to the challenges of an aged population. The handbook is structured in 4 sections covering theoretical and conceptual perspectives, social policy issues and research agenda, methods, measurement instrument-scales and evaluations, and lastly application studies including domains and geographical contexts.Peer reviewe
    corecore