5 research outputs found

    Ultraluminous X-ray sources out to z~0.3 in the COSMOS field

    Get PDF
    Using Chandra observations we have identified a sample of seven off-nuclear X-ray sources, in the redshift range z=0.072-0.283, located within optically bright galaxies in the COSMOS Survey. Using the multi-wavelength coverage available in the COSMOS field, we study the properties of the host galaxies of these ULXs. In detail, we derived their star formation rate from H_alpha measurements and their stellar masses using SED fitting techniques with the aim to compute the probability to have an off-nuclear source based on the host galaxy properties. We divide the host galaxies in different morphological classes using the available ACS/HST imaging. We find that our ULXs candidates are located in regions of the SFR versus Mstar_star plane where one or more off-nuclear detectable sources are expected. From a morphological analysis of the ACS imaging and the use of rest-frame colours, we find that our ULXs are hosted both in late and early type galaxies. Finally, we find that the fraction of galaxies hosting a ULX ranges from ~0.5% to ~0.2% going from L[0.5-2 keV]=3 x 10^39 erg s^-1 to L[0.5-2 keV]= 2 x 10^40 erg s^-1.Comment: 10 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    1980 Selected Bibliography

    No full text
    corecore