1,476 research outputs found

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    Full text link
    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood -especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwar's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.Comment: 4 pages, 1 figure. To appear in the proceedings of IAU Symposium 277, "Tracing the Ancestry of Galaxies on the Land of our Ancestors", Carignan, Freeman, and Combes, ed

    Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

    Full text link
    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.Comment: Accepted for publication in ApJ

    Integral field spectroscopy of nitrogen overabundant blue compact dwarf galaxies

    Get PDF
    We study the spatial distribution of the physical properties and of oxygen and nitrogen abundances in three Blue Compact Dwarf Galaxiess (HS 0128+2832, HS 0837+4717 and Mrk 930) with a reported excess of N/O in order to investigate the nature of this excess and, particularly, if it is associated with Wolf-Rayet (WR) stars We have observed these BCDs by using PMAS integral field spectroscopy in the optical spectral range (3700 - 6900 {\AA}), mapping their physical-chemical properties, using both the direct method and appropriate strong-line methods. We make a statistical analysis of the resulting distributions and we compare them with the integrated properties of the galaxies. Our results indicate that outer parts of the three galaxies are placed on the "AGN-zone" of the [NII]/H{\alpha} vs. [OIII]/H{\beta} diagnostic diagram most likely due to a high N/O combined with the excitation structure in these regions. From the statistical analysis, it is assumed that a certain property can be considered as spatially homogeneous (or uniform) if a normal gaussian function fits its distribution in several regions of the galaxy. Moreover, a disagreement between the integrated properties and the mean values of the distribution usually appears when a gaussian does not fit the corresponding distribution. We find that for Mrk 930, the uniformity is found for all parameters, except for electron density and reddening. The rotation curve together with the H{\alpha} map and UV images, reveal a perturbed morphology and possible interacting processes. The N/O is found to be constant in the three studied objects at spatial scales of the order of several kpc so we conclude that the number of WR stars estimated from spectroscopy is not sufficient to pollute the ISM and to produce the observed N/O excess in these objectsComment: 17 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    International scientific research on venture capital: a bibliometric and mapping analysis from the period 1978–2020

    Get PDF
    The aim of this study is to explore the relevance of scientific production on venture capital using bibliometric and mapping tools.We performed a search in Scopus, involving any document published between 1978 and 2020. We used bibliometric indicators to explore documents production, dispersion, distribution, time of duplication, and annual growth, as Price’s law of scientific literature growth, Lotka’s law, the transient index, and the Bradford model. We also calculated the participation index of the different countries and institutions. Finally, we explored the co-occurrence and thematic networks for the most frequently used terms in venture capital research through bibliometric mapping.A total of 1,230 original articles were collected from the timeframe 1978–2020. The model confirms that Price’s law is not fulfilled. Scientific production was better adjusted to linear growth (r = 0.9290) than exponential (r = 0.9161). Literature on venture capital research has increased its growth in the last 43 years at a rate of 7.9% per year, with a production that doubles its size every 9.1 years. The transience index was 79.91%, which indicates that most of the scientific production is due to a lot of authors with a small number of publications on the research topic. Bradford´s law shows that the scientific production in this area is widely distributed in multiple journals, and Lotka’s law indicates that the author’s distribution is heavily concentrated on small producers. The United States of America (USA) and the University of Pennsylvania present the highest production, contributing 31.22% and 1.63% of the total production of research on venture capital.The venture capital task has undergone a linear growth, with a very high rate of transience, which indicates the presence of numerous authors who sporadically publish on this topic. No evidence of a saturation point was observed in the scientific production analyzed, which makes it possible to conclude that the research in venture capital will continue to be in demand by the scientific community.The aim of this study is to explore the relevance of scientific production on venture capital using bibliometric and mapping tools.We performed a search in Scopus, involving any document published between 1978 and 2020. We used bibliometric indicators to explore documents production, dispersion, distribution, time of duplication, and annual growth, as Price’s law of scientific literature growth, Lotka’s law, the transient index, and the Bradford model. We also calculated the participation index of the different countries and institutions. Finally, we explored the co-occurrence and thematic networks for the most frequently used terms in venture capital research through bibliometric mapping.A total of 1,230 original articles were collected from the timeframe 1978–2020. The model confirms that Price’s law is not fulfilled. Scientific production was better adjusted to linear growth (r = 0.9290) than exponential (r = 0.9161). Literature on venture capital research has increased its growth in the last 43 years at a rate of 7.9% per year, with a production that doubles its size every 9.1 years. The transience index was 79.91%, which indicates that most of the scientific production is due to a lot of authors with a small number of publications on the research topic. Bradford´s law shows that the scientific production in this area is widely distributed in multiple journals, and Lotka’s law indicates that the author’s distribution is heavily concentrated on small producers. The United States of America (USA) and the University of Pennsylvania present the highest production, contributing 31.22% and 1.63% of the total production of research on venture capital.The venture capital task has undergone a linear growth, with a very high rate of transience, which indicates the presence of numerous authors who sporadically publish on this topic. No evidence of a saturation point was observed in the scientific production analyzed, which makes it possible to conclude that the research in venture capital will continue to be in demand by the scientific community

    Seedling growth declines in warmed tropical forest soils

    Get PDF
    The response of plants to a warming climate could have a large feedback on further climatic change. This feedback is especially important for tropical forests, where the global peak in plant productivity and biodiversity occurs. Here we test the response of tropical forest tree seedling growth, photosynthesis and herbivory to 3 years of in situ full-soil profile warming. We studied six species, three of which are known nitrogen-fixers and we hypothesized that the warming response of growth will be mediated by nutrient availability to plants. Across species, growth was significantly lower in warmed soil compared to soil at ambient temperature, and the same pattern was observed for light-saturated photosynthesis, pointing toward a growth decline associated with decreased C fixation. Within species, the relative growth decline was significant for two species, Inga laurina and Tachigali versicolor, both of which are N-fixers. Together our results suggest a growth decline may have resulted from a negative effect of warming on N-fixation, rather than via changes in nutrient mineralization from soil organic matter, which was unchanged for N and increased for P during the dry-to-wet season transition. Overall, our study demonstrates that belowground warming causes species-specific declines in the growth and photosynthesis of seedlings, with a suggestion—requiring further investigation—that this growth decline is larger in N-fixing species
    corecore